Enhancing the capability of Klebsiella pneumoniae to produce 1, 3-propanediol by overexpression and regulation through CRISPR-dCas9.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 101316335 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-7915 (Electronic) Linking ISSN: 17517915 NLM ISO Abbreviation: Microb Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: Hoboken, NJ : Wiley-Blackwell
      Original Publication: Oxford : Blackwell, c2008-
    • Subject Terms:
    • Abstract:
      Klebsiella pneumoniae is a common strain of bacterial fermentation to produce 1, 3-propanediol (1, 3-PDO). In general, the production of 1, 3-PDO by wild-type K. pneumoniae is relatively low. Therefore, a new gene manipulation of K. pneumoniae was developed to improve the production of 1, 3-PDO by overexpressing in the reduction pathway and attenuating the by-products in the oxidation pathway. Firstly, dhaB and/or dhaT were overexpressed in the reduction pathway. Considering the cost of IPTG, the constitutive promoter P32 was selected to express the key gene. By comparing K.P. pET28a-P32-dhaT with the original strain, the production of 1, 3-PDO was increased by 19.7%, from 12.97 to 15.53 g l -1 (in a 250 ml shaker flask). Secondly, three lldD and budC regulatory sites were selected in the by-product pathway, respectively, using the CRISPR-dCas9 system, and the optimal regulatory sites were selected following the 1, 3-PDO production. As a result, the 1, 3-PDO production by K.P. L1-pRH2521 and K.P. B3-pRH2521 reached up to 19.16 and 18.74 g l -1 , which was increased by 47.7% and 44.5% respectively. Overexpressing dhaT and inhibiting expression of lldD and budC were combined to further enhance the ability of K. pneumoniae to produce 1, 3-PDO. The 1, 3-PDO production by K.P. L1-B3-PRH2521-P32-dhaT reached 57.85 g l -1 in a 7.5 l fermentation tank (with Na + neutralizer), which is higher than that of the original strain. This is the first time that the 1, 3-PDO production was improved in K. pneumoniae by overexpressing the key gene and attenuating by-product synthesis in the CRISPR-dCas9 system. This study reports an efficient approach to regulate the expression of genes in K. pneumoniae to increase the 1, 3-PDO production, and such a strategy may be useful to modify other strains to produce valuable chemicals.
      (© 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
    • References:
      Biotechnol Biofuels. 2016 Apr 19;9:90. (PMID: 27099629)
      Bioresour Technol. 2017 Dec;245(Pt B):1542-1550. (PMID: 28549809)
      Biotechnol Lett. 2004 Jun;26(11):911-5. (PMID: 15269540)
      Bioresour Technol. 2021 Jan;319:124218. (PMID: 33049440)
      Biotechnol Adv. 2009 Nov-Dec;27(6):715-725. (PMID: 19442714)
      Metab Eng. 2020 Nov;62:116-125. (PMID: 32898717)
      Metab Eng. 2008 Sep;10(5):234-45. (PMID: 18632294)
      Fungal Genet Biol. 2018 Jun;115:78-89. (PMID: 29325827)
      Biotechnol J. 2018 Sep;13(9):e1700582. (PMID: 29663663)
      Acta Biochim Pol. 2015;62(1):23-34. (PMID: 25710056)
      J Biotechnol. 2014 May 10;177:13-9. (PMID: 24583287)
      Metab Eng. 2017 Jan;39:192-199. (PMID: 27998670)
      Biotechnol Appl Biochem. 2013 Nov-Dec;60(6):557-63. (PMID: 23586646)
      ACS Synth Biol. 2018 Oct 19;7(10):2436-2446. (PMID: 30234972)
      J Ind Microbiol Biotechnol. 2010 Jul;37(7):707-16. (PMID: 20379761)
      Bioprocess Biosyst Eng. 2014 Mar;37(3):513-9. (PMID: 23892658)
      CRISPR J. 2021 Apr;4(2):275-289. (PMID: 33876957)
      Biotechnol Adv. 2018 Jan - Feb;36(1):150-167. (PMID: 29056473)
      Appl Environ Microbiol. 1987 Oct;53(10):2452-7. (PMID: 2447829)
      Microb Cell Fact. 2021 Mar 17;20(1):70. (PMID: 33731113)
      Genomics. 2021 Jan;113(1 Pt 2):1109-1119. (PMID: 33166602)
      J Ind Microbiol Biotechnol. 2017 Mar;44(3):477-488. (PMID: 28093656)
      Biotechnol Prog. 2009 Jan-Feb;25(1):103-15. (PMID: 19224565)
      Biotechnol Lett. 2006 Nov;28(22):1817-21. (PMID: 16912919)
      Biotechnol Adv. 2010 Jul-Aug;28(4):519-30. (PMID: 20362657)
      Biotechnol Prog. 2005 Sep-Oct;21(5):1366-72. (PMID: 16209539)
      Bioresour Technol. 2016 Aug;214:432-440. (PMID: 27160953)
      Microb Cell Fact. 2021 Jun 29;20(1):123. (PMID: 34187467)
      Curr Gene Ther. 2017;17(4):286-300. (PMID: 29173171)
      BMC Biotechnol. 2021 Feb 4;21(1):13. (PMID: 33541329)
      Biotechnol J. 2018 Sep;13(9):e1700584. (PMID: 29729131)
      Biotechnol Lett. 2015 Sep;37(9):1783-90. (PMID: 25957564)
      Appl Biochem Biotechnol. 2010 Sep;162(2):399-407. (PMID: 19728170)
      Biotechnol Biofuels. 2018 Apr 09;11:104. (PMID: 29657579)
      Microb Biotechnol. 2022 Jul;15(7):2112-2125. (PMID: 35298861)
      J Bacteriol. 1993 Mar;175(5):1392-404. (PMID: 8444801)
      Appl Biochem Biotechnol. 2020 May;191(1):346-359. (PMID: 31863348)
      J Ind Microbiol Biotechnol. 2008 Jul;35(7):735-41. (PMID: 18365261)
      Front Microbiol. 2021 Nov 26;12:770109. (PMID: 34899654)
      Bioprocess Biosyst Eng. 2013 Jun;36(6):757-63. (PMID: 23361186)
      Sci Rep. 2020 Apr 2;10(1):5802. (PMID: 32242064)
      Bioresour Technol. 2021 Oct;337:125361. (PMID: 34320778)
      Metab Eng. 2006 Mar;8(2):102-11. (PMID: 16289778)
      J Bacteriol. 2008 Apr;190(8):2997-3005. (PMID: 18263722)
      Front Genet. 2020 Jul 31;11:855. (PMID: 32849834)
      Bioprocess Biosyst Eng. 2009 Apr;32(3):313-20. (PMID: 18682988)
    • Accession Number:
      0 (Propylene Glycols)
      6DC9Q167V3 (Propylene Glycol)
      PDC6A3C0OX (Glycerol)
    • Publication Date:
      Date Created: 20220317 Date Completed: 20220706 Latest Revision: 20220718
    • Publication Date:
      20240829
    • Accession Number:
      PMC9249332
    • Accession Number:
      10.1111/1751-7915.14033
    • Accession Number:
      35298861