Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Assessment of linkage disequilibrium patterns between structural variants and single nucleotide polymorphisms in three commercial chicken populations.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
- Publication Information:
Original Publication: London : BioMed Central, [2000-
- Subject Terms:
- Abstract:
Background: Structural variants (SV) are causative for some prominent phenotypic traits of livestock as different comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly studied. Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether close-by single nucleotide polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and can serve as markers. Literature comes to different conclusions on whether SVs are in LD to SNPs on the same level as SNPs to other SNPs. The present study aimed to generate a precise SV callset from whole-genome short-read sequencing (WGS) data for three commercial chicken populations and to evaluate LD patterns between the called SVs and surrounding SNPs. It is thereby the first study that assessed LD between SVs and SNPs in chickens.
Results: The final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 218 inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and SNPs was at the same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly reduced (DUP: 40%, INV: 27%, BND: 19% of between-SNP LD). A main factor for the reduced LD was the presence of local minor allele frequency differences, which accounted for 50% of the difference between SNP - SNP and DUP - SNP LD. This was potentially accompanied by lower genotyping accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of the presence of tag SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged by WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when reducing the pool of potential tag SNPs to SNPs located on four different chicken genotyping arrays.
Conclusions: The results implied that genomic variance due to DELs in the chicken populations studied can be captured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be advisable for DUP, INV, and BND effects.
(© 2022. The Author(s).)
- References:
Nature. 2010 Apr 1;464(7289):704-12. (PMID: 19812545)
Sci Rep. 2015 Aug 03;5:12535. (PMID: 26234186)
BMC Genomics. 2019 May 22;20(1):410. (PMID: 31117951)
PLoS Genet. 2021 Jul 21;17(7):e1009331. (PMID: 34288907)
Nat Methods. 2015 Oct;12(10):966-8. (PMID: 26258291)
Gigascience. 2018 Jul 1;7(7):. (PMID: 29860504)
BMC Genomics. 2014 Oct 25;15:934. (PMID: 25344733)
Am J Hum Genet. 2012 Jan 13;90(1):7-24. (PMID: 22243964)
Bioinformatics. 2012 Sep 15;28(18):i333-i339. (PMID: 22962449)
Anim Genet. 2013 Jun;44(3):276-84. (PMID: 23173786)
BMC Genomics. 2011 Feb 03;12:94. (PMID: 21291514)
Nat Genet. 2008 Oct;40(10):1166-74. (PMID: 18776908)
BMC Genomics. 2014 Jun 24;15:517. (PMID: 24962627)
PLoS Genet. 2019 Apr 29;15(4):e1007989. (PMID: 31034467)
PLoS One. 2021 Mar 30;16(3):e0245178. (PMID: 33784304)
BMC Genomics. 2013 Jan 28;14:59. (PMID: 23356797)
Nature. 2015 Oct 1;526(7571):75-81. (PMID: 26432246)
Bioinformatics. 2014 Oct 15;30(20):2843-51. (PMID: 24974202)
Nat Genet. 2008 Oct;40(10):1199-203. (PMID: 18776910)
Animal. 2017 May;11(5):737-745. (PMID: 27819220)
BMC Genomics. 2020 Aug 24;21(1):576. (PMID: 32831014)
Am J Hum Genet. 2018 Sep 6;103(3):338-348. (PMID: 30100085)
Genome Biol. 2016 Jun 06;17(1):122. (PMID: 27268795)
Annu Rev Anim Biosci. 2019 Feb 15;7:89-102. (PMID: 30508490)
Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
Bioinformatics. 2012 Oct 1;28(19):2520-2. (PMID: 22908215)
Nat Rev Genet. 2006 Feb;7(2):85-97. (PMID: 16418744)
BMC Genomics. 2020 Jan 28;21(1):89. (PMID: 31992181)
Am J Hum Genet. 2006 Aug;79(2):275-90. (PMID: 16826518)
Genes (Basel). 2018 Jan 17;9(1):. (PMID: 29342086)
PLoS One. 2020 Oct 23;15(10):e0241137. (PMID: 33095808)
Nat Genet. 2006 Jan;38(1):86-92. (PMID: 16468122)
Pathogenetics. 2008 Nov 03;1(1):4. (PMID: 19014668)
Brief Funct Genomics. 2015 Sep;14(5):305-14. (PMID: 25877305)
BMC Genomics. 2010 Jun 03;11:351. (PMID: 20525236)
PLoS Genet. 2012 Jun;8(6):e1002775. (PMID: 22761584)
Genome Biol Evol. 2013;5(7):1376-92. (PMID: 23814129)
Genome Biol. 2014 Jun 26;15(6):R84. (PMID: 24970577)
BMC Genomics. 2021 May 12;22(1):340. (PMID: 33980139)
Bioinformatics. 2018 Mar 1;34(5):867-868. (PMID: 29096012)
BMC Genomics. 2019 May 7;20(1):345. (PMID: 31064348)
Bioinformatics. 2016 Apr 15;32(8):1220-2. (PMID: 26647377)
BMC Genomics. 2015 Oct 23;16:843. (PMID: 26492869)
BMC Genomics. 2013 Jun 13;14:398. (PMID: 23763846)
Bioinformatics. 2011 Nov 1;27(21):2987-93. (PMID: 21903627)
Evol Lett. 2020 Dec 17;5(1):33-47. (PMID: 33552534)
Genome Res. 2007 Nov;17(11):1665-74. (PMID: 17921354)
Nat Genet. 2006 Jan;38(1):82-5. (PMID: 16327809)
Bioinformatics. 2016 Oct 1;32(19):3047-8. (PMID: 27312411)
Genetics. 2001 Apr;157(4):1819-29. (PMID: 11290733)
Genome Res. 2002 Jun;12(6):996-1006. (PMID: 12045153)
Nat Commun. 2017 Jan 24;8:14061. (PMID: 28117401)
Genome Biol. 2021 May 25;22(1):161. (PMID: 34034781)
Genome. 2018 Jan;61(1):7-14. (PMID: 28961404)
Gigascience. 2019 Apr 1;8(4):. (PMID: 31222198)
Nat Rev Genet. 2020 Mar;21(3):171-189. (PMID: 31729472)
Nature. 2015 Oct 1;526(7571):68-74. (PMID: 26432245)
Front Genet. 2014 Feb 18;5:37. (PMID: 24600474)
BMC Genet. 2010 Nov 15;11:103. (PMID: 21078133)
Nature. 2011 Feb 3;470(7332):59-65. (PMID: 21293372)
Animals (Basel). 2019 Oct 15;9(10):. (PMID: 31618984)
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19529-36. (PMID: 23151514)
Am J Hum Genet. 2007 Sep;81(3):559-75. (PMID: 17701901)
Nat Rev Genet. 2018 Jun;19(6):329-346. (PMID: 29599501)
BMC Genomics. 2013 Apr 17;14:262. (PMID: 23594354)
Genome Res. 2011 Jun;21(6):974-84. (PMID: 21324876)
G3 (Bethesda). 2020 Jan 7;10(1):177-188. (PMID: 31676508)
G3 (Bethesda). 2020 Dec 3;10(12):4615-4623. (PMID: 33077478)
BMC Genomics. 2014 Aug 15;15:683. (PMID: 25128478)
Nat Rev Genet. 2009 Aug;10(8):551-64. (PMID: 19597530)
Front Genet. 2020 Jan 17;10:1304. (PMID: 32010183)
Nat Genet. 2006 Jan;38(1):75-81. (PMID: 16327808)
BMC Genomics. 2020 Nov 4;21(1):762. (PMID: 33148192)
Hum Mol Genet. 2010 Mar 1;19(5):761-73. (PMID: 19966329)
Theor Popul Biol. 2008 Aug;74(1):130-7. (PMID: 18572214)
BMC Genet. 2017 Jul 3;18(1):61. (PMID: 28673234)
Anim Genet. 2012 Jun;43(3):282-9. (PMID: 22486499)
PLoS One. 2015 Oct 30;10(10):e0141216. (PMID: 26517830)
Evol Appl. 2019 Sep 30;13(2):330-341. (PMID: 31993080)
Nature. 2006 Nov 23;444(7118):444-54. (PMID: 17122850)
Poult Sci. 2016 Aug 1;95(8):1750-6. (PMID: 27118864)
BMC Genomics. 2011 May 31;12(1):274. (PMID: 21627800)
- Contributed Indexing:
Keywords: Chickens; Linkage disequilibrium; Single nucleotide polymorphisms; Structural variants
- Publication Date:
Date Created: 20220310 Date Completed: 20220311 Latest Revision: 20220319
- Publication Date:
20231215
- Accession Number:
PMC8908679
- Accession Number:
10.1186/s12864-022-08418-7
- Accession Number:
35264116
No Comments.