Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      The energy-dissipating capacity of brown adipose tissue through thermogenesis can be targeted to improve energy balance. Mammalian 5'-AMP-activated protein kinase, a key nutrient sensor for maintaining cellular energy status, is a known therapeutic target in Type II diabetes. Despite its well-established roles in regulating glucose metabolism in various tissues, the functions of AMPK in the intestine remain largely unexplored. Here we show that AMPKα1 deficiency in the intestine results in weight gain and impaired glucose tolerance under high fat diet feeding, while metformin administration fails to ameliorate these metabolic disorders in intestinal AMPKα1 knockout mice. Further, AMPKα1 in the intestine communicates with brown adipose tissue to promote thermogenesis. Mechanistically, we uncover a link between intestinal AMPKα1 activation and BAT thermogenic regulation through modulating anti-microbial peptide-controlled gut microbiota and the metabolites. Our findings identify AMPKα1-mediated mechanisms of intestine-BAT communication that may partially underlie the therapeutic effects of metformin.
      (© 2022. The Author(s).)
    • Comments:
      Comment in: Nat Commun. 2022 May 23;13(1):2851. (PMID: 35606343)
    • References:
      Jackson, V. M. et al. Latest approaches for the treatment of obesity. Expert Opin. Drug Discov. 10, 825–839 (2015). (PMID: 2596713810.1517/17460441.2015.1044966)
      Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2018). (PMID: 2915340810.1016/j.cmet.2017.10.009)
      Hardie, D. G. & Sakamoto, K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21, 48–60 (2006). (PMID: 1644382210.1152/physiol.00044.2005)
      Harmel, E. et al. AMPK in the small intestine in normal and pathophysiological conditions. Endocrinology 155, 873–888 (2014). (PMID: 2442405310.1210/en.2013-1750)
      Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003). (PMID: 1461482810.1016/j.cub.2003.10.031)
      Steinberg, G. R. & Carling, D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov. 18, 527–551 (2019). (PMID: 3086760110.1038/s41573-019-0019-2)
      Desjardins, E. M. & Steinberg, G. R. Emerging role of AMPK in Brown and Beige adipose tissue (BAT): implications for obesity, insulin resistance, and type 2 diabetes. Curr. Diabetes Rep. 18, 80 (2018). (PMID: 10.1007/s11892-018-1049-6)
      Ding, L. et al. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity. Sci. Rep. 6, 34374 (2016). (PMID: 27694818504606810.1038/srep34374)
      van Dam, A. D., Kooijman, S., Schilperoort, M., Rensen, P. C. & Boon, M. R. Regulation of brown fat by AMP-activated protein kinase. Trends Mol. Med. 21, 571–579 (2015). (PMID: 2627114310.1016/j.molmed.2015.07.003)
      Smith, B. K. et al. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311, E730–E740 (2016). (PMID: 2757785410.1152/ajpendo.00225.2016)
      Duca, F. A. et al. Metformin activates a duodenal AMPK-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 (2015). (PMID: 25849133610480710.1038/nm.3787)
      Cote, C. D. et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat. Med. 21, 498–505 (2015). (PMID: 2584913110.1038/nm.3821)
      Walker, J. et al. 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Biochem. J. 385, 485–491 (2005). (PMID: 15367103113472010.1042/BJ20040694)
      Sakar, Y. et al. Metformin-induced regulation of the intestinal D-glucose transporters. J. Physiol. Pharm. 61, 301–307 (2010).
      Bauer, P. V. et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab. 27, 101 (2018). (PMID: 2905651310.1016/j.cmet.2017.09.019)
      Kim, K. H. et al. Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMP-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front. Pharm. 9, 1071 (2018). (PMID: 10.3389/fphar.2018.01071)
      Sun, X., Yang, Q., Rogers, C. J., Du, M. & Zhu, M. J. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ. 24, 819–831 (2017). (PMID: 28234358542310710.1038/cdd.2017.14)
      Duca, F. A., Bauer, P. V., Hamr, S. C. & Lam, T. K. Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab. 22, 367–380 (2015). (PMID: 2621271810.1016/j.cmet.2015.07.003)
      Yuan, T. et al. Effects of metformin on metabolism of white and brown adipose tissue in obese C57BL/6J mice. Diabetol. Metab. Syndr. 11, 96 (2019). (PMID: 31788033688050110.1186/s13098-019-0490-2)
      Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015). (PMID: 2663807010.1016/j.cell.2015.11.004)
      Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). (PMID: 1718331210.1038/nature05414)
      Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 5, 14405 (2015). (PMID: 26396057458577610.1038/srep14405)
      Li, B. et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 26, 2720–2737.e2725 (2019). (PMID: 3084089310.1016/j.celrep.2019.02.015)
      Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019). (PMID: 3067081910.1038/s41574-019-0156-z)
      Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut–brain neural circuit. Gut 67, 1269–1279 (2018). (PMID: 2910126110.1136/gutjnl-2017-314050)
      Hu, J. et al. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology 157, 1881–1894 (2016). (PMID: 2699006310.1210/en.2015-1944)
      Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018). (PMID: 30022159704528710.1038/s41586-018-0353-2)
      Mancabelli, L. et al. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci. Rep. 7, 9879 (2017). (PMID: 28852182557516310.1038/s41598-017-10663-w)
      Matafome, P., Rodrigues, T., Sena, C. & Seiça, R. Methylglyoxal in metabolic disorders: facts, myths, and promises. Med. Res. Rev. 37, 368–403 (2017). (PMID: 2763689010.1002/med.21410)
      Booth, I. R. et al. Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem. Soc. Trans. 31, 1406–1408 (2003). (PMID: 1464107510.1042/bst0311406)
      Moraru, A. et al. Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes. Cell Metab. 27, 926–934.e928 (2018). (PMID: 2955158810.1016/j.cmet.2018.02.003)
      Jia, X. & Wu, L. Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. Mol. Cell. Biochem. 306, 133–139 (2007). (PMID: 1766095110.1007/s11010-007-9563-x)
      Ageitos, J. M., Sanchez-Perez, A., Calo-Mata, P. & Villa, T. G. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharm. 133, 117–138 (2017). (PMID: 2766383810.1016/j.bcp.2016.09.018)
      Loonen, L. M. et al. REG3gamma-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol. 7, 939–947 (2014). (PMID: 2434580210.1038/mi.2013.109)
      Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin. Science (New York, NY) 313, 1126–1130 (2006). (PMID: 10.1126/science.1127119)
      Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 108, 1167–1174 (2001). (PMID: 1160262420953310.1172/JCI13505)
      Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014). (PMID: 24847880407424410.1038/nature13270)
      Luo, T. et al. AMPK activation by metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity. Diabetes 65, 2295–2310 (2016). (PMID: 27207538495598510.2337/db15-1122)
      McCreight, L. J., Bailey, C. J. & Pearson, E. R. Metformin and the gastrointestinal tract. Diabetologia 59, 426–435 (2016). (PMID: 26780750474250810.1007/s00125-015-3844-9)
      Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of metformin. Diabetologia 60, 1577–1585 (2017). (PMID: 28776086555282810.1007/s00125-017-4342-z)
      Stepensky, D., Friedman, M., Raz, I. & Hoffman, A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab. Dispos. 30, 861–868 (2002). (PMID: 1212430210.1124/dmd.30.8.861)
      Yang, Q. et al. AMPK/alpha-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metab. 24, 542–554 (2016). (PMID: 27641099506163310.1016/j.cmet.2016.08.010)
      Breining, P. et al. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes Obes. Metab. 20, 2264–2273 (2018). (PMID: 2975275910.1111/dom.13362)
      Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015). (PMID: 26633628468109910.1038/nature15766)
      Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). (PMID: 2853070210.1038/nm.4345)
      Bryrup, T. et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia 62, 1024–1035 (2019). (PMID: 30904939650909210.1007/s00125-019-4848-7)
      Chen, C. et al. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Funct. 9, 3732–3742 (2018). (PMID: 2999504810.1039/C7FO01346A)
      Lee, H. et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes 9, 155–165 (2018). (PMID: 29157127598980910.1080/19490976.2017.1405209)
      Ryan, P. M. et al. Metformin and dipeptidyl peptidase-4 Inhibitor differentially modulate the intestinal microbiota and plasma metabolome of metabolically dysfunctional mice. Can. J. Diabetes 44, 146–155 e142 (2020). (PMID: 3144596110.1016/j.jcjd.2019.05.008)
      Barengolts, E. et al. Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS ONE 13, e0194171 (2018). (PMID: 29596446587575610.1371/journal.pone.0194171)
      Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). (PMID: 2302312510.1038/nature11450)
      Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010). (PMID: 20140211281671010.1371/journal.pone.0009085)
      Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014). (PMID: 2380456110.1136/gutjnl-2012-303839)
      Bornstein, S. et al. Metformin affects cortical bone mass and marrow adiposity in diet-induced obesity in male mice. Endocrinology 158, 3369–3385 (2017). (PMID: 28977604565968310.1210/en.2017-00299)
      Hiel, S. et al. Link between gut microbiota and health outcomes in inulin -treated obese patients: lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clin. Nutr. 39, 3618–3628 (2020). (PMID: 3234090310.1016/j.clnu.2020.04.005)
      Elbere, I. et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS ONE 13, e0204317 (2018). (PMID: 30261008616008510.1371/journal.pone.0204317)
      Cui, H. X. et al. A purified anthraquinone-glycoside preparation from rhubarb ameliorates type 2 diabetes mellitus by modulating the gut microbiota and reducing inflammation. Front. Microbiol. 10, 1423 (2019). (PMID: 31293553660323310.3389/fmicb.2019.01423)
      Tong, X. et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula: a Multicenter, Randomized, Open Label Clinical Trial. mBio 9, e02392–17 (2018). (PMID: 29789365596435810.1128/mBio.02392-17)
      Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013). (PMID: 2371938010.1038/nature12198)
      Ji, S., Wang, L. & Li, L. Effect of metformin on short-term high-fat diet-induced weight gain and anxiety-like behavior and the gut microbiota. Front. Endocrinol. 10, 704 (2019). (PMID: 10.3389/fendo.2019.00704)
      Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005). (PMID: 16308421307442710.1126/science.1120781)
      Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013). (PMID: 24185692496526810.1038/nm.3372)
      Bailey, C. J., Wilcock, C. & Scarpello, J. H. Metformin and the intestine. Diabetologia 51, 1552–1553 (2008). (PMID: 1852867710.1007/s00125-008-1053-5)
      Buse, J. B. et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39, 198–205 (2016). (PMID: 2628558410.2337/dc15-0488)
      Chang, C. J. et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat. Commun. 6, 7489 (2015). (PMID: 26102296455728710.1038/ncomms8489)
      Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017). (PMID: 2862811210.1038/nm.4358)
      Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinforma. 9, 504 (2008). (PMID: 10.1186/1471-2105-9-504)
      Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012). (PMID: 2211178510.1021/ac202450g)
      Prince, J. T. & Marcotte, E. M. Chromatographic alignment of ESI–LC–MS proteomics data sets by ordered bijective interpolated warping. Anal. Chem. 78, 6140–6152 (2006). (PMID: 1694489610.1021/ac0605344)
      Rabbani, N. & Thornalley, P. J. Measurement of methylglyoxal by stable isotopic dilution analysis LC–MS/MS with corroborative prediction in physiological samples. Nat. Protoc. 9, 1969–1979 (2014). (PMID: 2505864410.1038/nprot.2014.129)
    • Grant Information:
      R01 DK124627 United States DK NIDDK NIH HHS; R01 DK081705 United States DK NIDDK NIH HHS; P30 CA033572 United States CA NCI NIH HHS; R01 HL106089 United States HL NHLBI NIH HHS; R56 DK129332 United States DK NIDDK NIH HHS; R01 CA139158 United States CA NCI NIH HHS
    • Accession Number:
      9100L32L2N (Metformin)
      EC 2.7.11.31 (AMP-Activated Protein Kinases)
    • Publication Date:
      Date Created: 20220304 Date Completed: 20220411 Latest Revision: 20230127
    • Publication Date:
      20240628
    • Accession Number:
      PMC8894485
    • Accession Number:
      10.1038/s41467-022-28743-5
    • Accession Number:
      35241650