2-oxoglutarate-dependent dioxygenases drive expansion of steroidal alkaloid structural diversity in the genus Solanum.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Wiley on behalf of New Phytologist Trust
      Original Publication: London, New York [etc.] Academic Press.
    • Subject Terms:
    • Abstract:
      Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.
      (© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.)
    • Comments:
      Erratum in: New Phytol. 2023 Dec;240(5):2165. (PMID: 37658666)
    • References:
      Akiyama R, Watanabe B, Nakayasu M, Lee HJ, Kato J, Umemoto N, Muranaka T, Saito K, Sugimoto Y, Mizutani M. 2021. The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nature Communications 12: 1300.
      Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramkrishnan S, Maumus F, Ciren D et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182: 145-161.
      Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, Kleessen S, Giavalisco P, Pleban T, Mueller-Roeber B et al. 2015. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27: 485-512.
      Cárdenas PD, Sonawane PD, Heinig U, Bocobza SE, Burdman S, Aharoni A. 2015. The bitter side of the nightshades: genomics drives discovery in Solanaceae steroidal alkaloid metabolism. Phytochemistry 113: 24-32.
      Cárdenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S et al. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications 7: 10654.
      Cárdenas PD, Sonawane PD, Heinig U, Jozwiak A, Panda S, Abebie B, Kazachkova Y, Pliner M, Unger T, Wolf D et al. 2019. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nature Communications 10: 5169.
      Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jimenez-Gomez JM, Peng J, Maloof JN et al. 2013. A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25: 2465-2481.
      Eich E. 2008. Solanaceae and convolvulaceae-secondary metabolites: biosynthesis chemotaxonomy biological and economic significance (a handbook). Berlin, Germany: Springer.
      Eshed Y, Zamir D. 1995. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141: 1147-1162.
      Farrow SC, Facchini P. 2014. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Frontiers in Plant Science 5: 524.
      Friedman M. 2002. Tomato glycoalkaloids: role in the plant and in the diet. Journal of Agriculture and Food Chemistry 50: 5751-5780.
      Friedman M. 2006. Potato glycoalkaloids and metabolites: roles in the plant and in the diet. Journal of Agriculture and Food Chemistry 54: 8655-8681.
      Fujisawa M, Nakano T, Shima Y, Ito Y. 2013. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25: 371-386.
      Hagel JM, Facchini PJ. 2018. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Natural Product Reports 35: 721.
      Iijima Y, Fujiwara Y, Tokita T, Ikeda T, Nohara T, Aoki K, Shibata D. 2009. Involvement of ethylene in the accumulation of esculeoside A during fruit ripening of tomato (Solanum lycopersicum). Journal of Agriculture and Food Chemistry 57: 3247-3252.
      Iijima Y, Watanabe B, Sasaki R, Takenaka M, Ono H, Sakurai N, Umemoto N, Suzuki H, Shibata D, Aoki K. 2013. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit. Phytochemistry 95: 145-157.
      Islam MS, Lessing T, Chowdhury R, Hopkinson R, Schofield C. 2018. 2-oxoglutarate-dependent oxygenases. Annual Review of Biochemistry 87: 585-620.
      Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R et al. 2013. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered genes. Science 341: 175-179.
      Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R et al. 2011. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23: 4507-4525.
      Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. 2009. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. The Plant Journal 60: 1081-1095.
      Jozwiak A, Sonawane PD, Panda S, Garagounis C, Papadopoulou KK, Abebie B, Massalha H, Almekias-Siegl E, Scherf T, Aharoni A. 2020. Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery. Nature Chemical Biology 16: 740-748.
      Kawai Y, Ono E, Mizutani M. 2014. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. The Plant Journal 78: 328-343.
      Kazachkova Y, Zemach I, Panda S, Bocobza S, Vainer A, Rogachev I, Dong Y, Ben-Dor S, Veres D, Kanstrup C et al. 2021. The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nature Plants 7: 468-480.
      Kneissl M, Deikman J. 1996. The tomato E8 gene influences ethylene biosynthesis in fruit but not in flowers. Plant Physiology 112: 537-547.
      Kozukue N, Yoon K, Byun G, Misoo S, Levin C, Friedman M. 2008. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. Journal of Agriculture and Food Chemistry 56: 11920-11928.
      Kreis W, Munkert J. 2019. Exploiting enzyme promiscuity to shape plant specialized metabolism. Journal of Experimental Botany 70: 1435-1445.
      Lewinsohn L, Gijzen M. 2009. Phytochemical diversity: the sounds of silent metabolism. Plant Science 176: 161-169.
      Lincoln J, Cordes S, Read E, Fischer R. 1987. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proceedings of the National Academy of Sciences, USA 84, 2793-2797.
      Lincoln J, Fischer R. 1988. Diverse mechanisms for the regulation of ethylene-inducible gene expression. Molecular and General Genetics 212: 71-75.
      Mweetwa AM, Hunter D, Poe R, Harich KC, Ginzberg I, Veilleux RE, Tokuhisa JG. 2012. Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry 75: 32-40.
      Nakayasu M, Umemoto N, Ohyama K, Fujimoto Y, Lee HJ, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. 2017. A dioxygenase catalyzes steroid 16α-hydroxylation in steroidal glycoalkaloid biosynthesis. Plant Physiology 175: 120-133.
      Ofner I, Lashbrooke J, Pleban T, Aharoni A, Zamir D. 2016. Solanum pennellii backcross inbred lines (BILs) link small genomic bins with tomato traits. The Plant Journal 87: 151-160.
      Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D. 2013. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiology 162: 1618-1631.
      Schwahn K, Perez de Souza L, Fernie AR, Tohge T. 2014. Metabolomics-assisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. Journal of Integrative Plant Biology 56: 864-875.
      Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J et al. 2011. Fast scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7: 539.
      Sonawane PD, Heinig U, Panda S, Gilboa NS, Yona M, Kumar SP, Alkan N, Unger T, Bocobza S, Pliner M et al. 2018. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proceedings of the National Academy of Sciences, USA 115: E5419-E5428.
      Sonawane PD, Jozwiak A, Panda S, Aharoni A. 2020. ‘Hijacking’ core metabolism: a new panache for the evolution of steroidal glycoalkaloids structural diversity. Current Opinion in Plant Biology 55: 118-128.
      Sonawane PD, Pollier J, Panda S, Szymanski J, Massalha H, Yona M, Unger T, Malitsky S, Arendt P, Pauwels L et al. 2016. Plant cholesterol biosynthetic pathway overlaps with phytosterols metabolism. Nature Plants 3: 16205.
      Szymański J, Bocobza S, Panda S, Sonawane P, Cárdenas PD, Lashbrooke J, Kamble A, Shahaf N, Meir S, Bovy A et al. 2020. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response. Nature Genetics 52: 1111-1121.
      Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
      Tieman D, Zhu G, Resende MFR, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang BO et al. 2017. A chemical genetic roadmap to improved tomato flavor. Science 355: 391-394.
    • Contributed Indexing:
      Keywords: Solanum; specialized metabolism; steroidal glycoalkaloids (SGAs); structural diversity; tomato
    • Accession Number:
      0 (Alkaloids)
      0 (Ketoglutaric Acids)
      EC 1.13.11.- (Dioxygenases)
    • Publication Date:
      Date Created: 20220303 Date Completed: 20220420 Latest Revision: 20230902
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/nph.18064
    • Accession Number:
      35238413