Abstract: Computational Biology for Stem Cell Research is an invaluable guide for researchers as they explore HSCs and MSCs in computational biology. With the growing advancement of technology in the field of biomedical sciences, computational approaches have reduced the financial and experimental burden of the experimental process. In the shortest span, it has established itself as an integral component of any biological research activity. HSC informatics (in silico) techniques such as machine learning, genome network analysis, data mining, complex genome structures, docking, system biology, mathematical modeling, programming (R, Python, Perl, etc.) help to analyze, visualize, network constructions, and protein-ligand or protein-protein interactions. This book is aimed at beginners with an exact correlation between the biomedical sciences and in silico computational methods for HSCs transplantation and translational research and provides insights into methods targeting HSCs properties like proliferation, self-renewal, differentiation, and apoptosis. - Modeling Stem Cell Behavior: Explore stem cell behavior through animal models, bridging laboratory studies to real-world clinical allogeneic HSC transplantation (HSCT) scenarios. - Bioinformatics-Driven Translational Research: Navigate a path from bench to bedside with cutting-edge bioinformatics approaches, translating computational insights into tangible advancements in stem cell research and medical applications. - Interdisciplinary Resource: Discover a single comprehensive resource catering to biomedical sciences, life sciences, and chemistry fields, offering essential insights into computational tools vital for modern research.
No Comments.