Can DNA help trace the local trade of pangolins? Conservation genetics of white-bellied pangolins from the Dahomey Gap (West Africa).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101775613 Publication Model: Electronic Cited Medium: Internet ISSN: 2730-7182 (Electronic) Linking ISSN: 27307182 NLM ISO Abbreviation: BMC Ecol Evol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2021]-
    • Subject Terms:
    • Abstract:
      Background: African pangolins are currently experiencing unprecedented levels of harvesting, feeding both local demands and the illegal international trade. So far, the lack of knowledge on the population genetics of African pangolins has hampered any attempts at assessing their demographic status and tracing their trade at the local scale. We conducted a pioneer study on the genetic tracing of the African pangolin trade in the Dahomey Gap (DG). We sequenced and genotyped 189 white-bellied pangolins from 18 forests and 12 wildlife markets using one mitochondrial fragment and 20 microsatellite loci.
      Results: Tree-based assignment procedure showed that the pangolin trade is endemic to the DG region, as it was strictly fed by the the Dahomey Gap lineage (DGL). DGL populations were characterized by low levels of genetic diversity, an overall absence of equilibrium, important inbreeding levels, and lack of geographic structure. We identified a 92-98% decline in DGL effective population size 200-500 ya-concomitant with major political transformations along the 'Slave Coast'-leading to contemporaneous estimates being inferior to minimum viable population size (< 500). Genetic tracing suggested that wildlife markets from the DG sourced pangolins through the entire DGL range. Our loci provided the necessary power to distinguish among all the genotyped pangolins, tracing the dispatch of a same individual on the markets and within local communities. We developed an approach combining rarefaction analysis of private allele frequencies with cross-validation of observed data that traced five traded pangolins to their forest origin, c. 200-300 km away from the markets.
      Conclusions: Although the genetic toolkit that we designed from traditional markers can prove helpful to trace the illegal trade in pangolins, our tracing ability was limited by the lack of population structure within the DGL. Given the deleterious combination of genetic, demographic, and trade-related factors affecting DGL populations, the conservation status of white-bellied pangolins in the DG should be urgently re-evaluated.
      (© 2022. The Author(s).)
    • References:
      Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
      Biol Conserv. 2021 May;257:109136. (PMID: 34580548)
      Infect Genet Evol. 2020 Oct;84:104493. (PMID: 32768565)
      Hum Hered. 2001;52(4):191-200. (PMID: 11713415)
      PeerJ. 2014 Mar 04;2:e281. (PMID: 24688859)
      Mol Ecol. 2001 Jan;10(1):249-56. (PMID: 11251803)
      Hum Biol. 1992 Apr;64(2):141-59. (PMID: 1559686)
      J Hered. 2009 Jan-Feb;100(1):106-13. (PMID: 18936113)
      Genetics. 2008 May;179(1):555-67. (PMID: 18493071)
      Evol Bioinform Online. 2007 Feb 23;1:47-50. (PMID: 19325852)
      J Ethnobiol Ethnomed. 2021 Mar 23;17(1):18. (PMID: 33757552)
      Mol Biol Evol. 2002 Dec;19(12):2092-100. (PMID: 12446801)
      Am J Hum Genet. 2005 May;76(5):887-93. (PMID: 15789306)
      Bioinformatics. 2010 Feb 1;26(3):419-20. (PMID: 20080509)
      Zookeys. 2016 Sep 19;(618):129-144. (PMID: 27853403)
      Mol Biol Rep. 2020 Jun;47(6):4827-4833. (PMID: 32419053)
      J Genet. 2020;99:. (PMID: 32366731)
      Bioinformatics. 2012 Oct 1;28(19):2537-9. (PMID: 22820204)
      Mol Biol Evol. 2017 Dec 1;34(12):3299-3302. (PMID: 29029172)
      J Mol Evol. 1980 Dec;16(2):111-20. (PMID: 7463489)
      Genetics. 1997 Oct;147(2):915-25. (PMID: 9335623)
      Forensic Sci Int Genet. 2015 Sep;18:152-9. (PMID: 25795277)
      Nat Rev Genet. 2009 Mar;10(3):195-205. (PMID: 19204717)
      Hum Biol. 1994 Aug;66(4):591-600. (PMID: 8088750)
      Mol Ecol. 2005 Jul;14(8):2611-20. (PMID: 15969739)
      Genetics. 1999 Jul;152(3):1079-89. (PMID: 10388826)
      Bioinformatics. 2008 Nov 1;24(21):2498-504. (PMID: 18779233)
      Bioinformatics. 2012 Jun 15;28(12):1647-9. (PMID: 22543367)
      Mol Ecol Resour. 2010 May;10(3):564-7. (PMID: 21565059)
      PLoS One. 2013 May 21;8(5):e63981. (PMID: 23704965)
      Mol Ecol. 2011 Mar;20(6):1083-91. (PMID: 21375616)
      Nucleic Acids Res. 1996 Aug 15;24(16):3189-94. (PMID: 8774899)
      Bioinformatics. 2008 Jun 1;24(11):1403-5. (PMID: 18397895)
      Sci Rep. 2020 Feb 21;10(1):3188. (PMID: 32081854)
      Nat Commun. 2018 Nov 16;9(1):4836. (PMID: 30446730)
      Mol Ecol. 2016 Dec;25(23):5975-5993. (PMID: 27862533)
      Chromosoma. 2000 Sep;109(6):365-71. (PMID: 11072791)
      Mammalia. 1975;39(4):613-41. (PMID: 1225673)
      Genetics. 1989 Nov;123(3):585-95. (PMID: 2513255)
    • Contributed Indexing:
      Keywords: Conservation genetics; Dahomey Gap; Demographic decline; Microsatellites; Trade tracing; White-bellied pangolin
    • Accession Number:
      9007-49-2 (DNA)
    • Publication Date:
      Date Created: 20220215 Date Completed: 20220425 Latest Revision: 20240822
    • Publication Date:
      20240822
    • Accession Number:
      PMC8842964
    • Accession Number:
      10.1186/s12862-022-01971-5
    • Accession Number:
      35164675