Male zebrafish (Danio rerio) do not preferentially associate with familiar over unfamiliar conspecifics.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Blonder AF;Blonder AF; Tarvin KA; Tarvin KA
  • Source:
    Journal of fish biology [J Fish Biol] 2022 Apr; Vol. 100 (4), pp. 1025-1032. Date of Electronic Publication: 2022 Feb 24.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Blackwell Publishing Country of Publication: England NLM ID: 0214055 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-8649 (Electronic) Linking ISSN: 00221112 NLM ISO Abbreviation: J Fish Biol Subsets: MEDLINE
    • Publication Information:
      Publication: 2003- : Oxford, UK : Blackwell Publishing
      Original Publication: London, New York, Published for the Fisheries Society of the British Isles by Academic Press.
    • Subject Terms:
    • Abstract:
      Members of several shoaling species have been shown to prefer to associate with familiar individuals, enhancing the benefits of aggregation. The authors used a series of social preference tasks in the laboratory to evaluate whether prior familiarity with potential partners influences preference of shoaling partner in male zebrafish (Danio rerio), a social species found in shallow, slow-moving waters. The authors found that though male zebrafish exhibited a strong preference for shoaling with a male conspecific as opposed to remaining alone, they exhibited no preference for familiar over unfamiliar conspecifics. This suggests that the benefits of familiarity for shoaling behaviour may not be as important for male zebrafish as has been shown in other social fish species.
      (© 2022 Fisheries Society of the British Isles.)
    • References:
      Ariyasiri, K., Choi, T. I., Kim, O. H., Hong, T. I., Gerlai, R., & Kim, C. H. (2019). Pharmacological (ethanol) and mutation (sam2 KO) induced impairment of novelty preference in zebrafish quantified using a new three-chamber social choice task. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 53-65. https://doi.org/10.1016/J.PNPBP.2018.06.009.
      Arnegard, M. E., & Carlson, B. A. (2005). Electric organ discharge patterns during group hunting by a mormyrid fish. Proceedings of the Royal Society B: Biological Sciences, 272(1570), 1305-1314. https://doi.org/10.1098/RSPB.2005.3101.
      Aslanzadeh, M., Ariyasiri, K., Kim, O.-H., Choi, T.-I., Lim, J.-H., Kim, H.-G., … Kim, C.-H. (2019). The body size of stimulus conspecifics affects social preference in a binary choice task in wild-type, but not in dyrk1aa mutant, Zebrafish. Zebrafish, 16(3), 262-267. https://doi.org/10.1089/ZEB.2018.1717.
      Barber, I., & Ruxton, G. D. (2000). The importance of stable schooling: Do familiar sticklebacks stick together? Proceedings of the Royal Society B: Biological Sciences, 267(1439), 151-155. https://doi.org/10.1098/rspb.2000.0980.
      Chivers, D. P., Brown, G. E., & Smith, R. J. F. (1995). Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): Implications for antipredator behaviour. Canadian Journal of Zoology, 73(5), 955-960. https://doi.org/10.1139/z95-111.
      Croft, D. P., Arrowsmith, B. J., Bielby, J., Skinner, K., White, E., Couzin, I. D., … Krause, J. (2003). Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos, 100(3), 429-438. https://doi.org/10.1034/j.1600-0706.2003.12023.x.
      Croft, D. P., Arrowsmith, B. J., Webster, M., & Krause, J. (2004). Intra-sexual preferences for familiar fish in male guppies. Journal of Fish Biology, 64(1), 279-283. https://doi.org/10.1111/J.1095-8649.2004.00305.X.
      Croft, D. P., James, R., Thomas, P. O. R., Hathaway, C., Mawdsley, D., Laland, K. N., & Krause, J. (2006). Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 59(5), 644-650. https://doi.org/10.1007/s00265-005-0091-y.
      Croft, D. P., James, R., Ward, A. J. W., Botham, M. S., Mawdsley, D., & Krause, J. (2005). Assortative interactions and social networks in fish. Oecologia, 143(2), 211-219. https://doi.org/10.1007/s00442-004-1796-8.
      Dugatkin, L. A., & Alfieri, M. S. (1991). Guppies and the TIT FOR TAT strategy: Preference based on past interaction. Behavioral Ecology and Sociobiology, 28(4), 243-246. https://doi.org/10.1007/BF00175096.
      Engeszer, R. E., Ryan, M. J., & Parichy, D. M. (2004). Learned social preference in zebrafish. Current Biology, 14(10), 881-884. https://doi.org/10.1016/J.CUB.2004.04.042.
      Fernandes, Y., Rampersad, M., Jia, J., & Gerlai, R. (2015). The effect of the number and size of animated conspecific images on shoaling responses of zebrafish. Pharmacology Biochemistry and Behavior, 139, 94-102. https://doi.org/10.1016/J.PBB.2015.01.011.
      Genario, R., de Abreu, M. S., Giacomini, A. C. V. V., Demin, K. A., & Kalueff, A. V. (2020). Sex differences in behavior and neuropharmacology of zebrafish. European Journal of Neuroscience, 52(1), 2586-2603. https://doi.org/10.1111/EJN.14438.
      Gerlach, G., Hodgins-Davis, A., Avolio, C., & Schunter, C. (2008). Kin recognition in zebrafish: A 24-hour window for olfactory imprinting. Proceedings of the Royal Society B: Biological Sciences, 275(1647), 2165-2170. https://doi.org/10.1098/rspb.2008.0647.
      Gerlach, G., & Lysiak, N. (2006). Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Animal Behaviour, 71(6), 1371-1377. https://doi.org/10.1016/J.ANBEHAV.2005.10.010.
      Gerlotto, F., Bertrand, S., Bez, N., & Gutierrez, M. (2006). Waves of agitation inside anchovy schools observed with multibeam sonar: A way to transmit information in response to predation. ICES Journal of Marine Science, 63(8), 1405-1417. https://doi.org/10.1016/J.ICESJMS.2006.04.023.
      Granroth-Wilding, H. M. V., & Magurran, A. E. (2013). Asymmetry in pay-off predicts how familiar individuals respond to one another. Biology Letters, 9(3) 20130025. https://doi.org/10.1098/rsbl.2013.0025.
      Griffiths, S. W., & Magurran, A. E. (1997a). Familiarity in schooling fish: How long does it take to acquire? Animal Behaviour, 53(5), 945-949. https://doi.org/10.1006/anbe.1996.0315.
      Griffiths, S. W., & Magurran, A. E. (1998). Sex and schooling behaviour in the Trinidadian guppy. Animal Behaviour, 56(3), 689-693. https://doi.org/10.1006/anbe.1998.0767.
      Griffiths, S. W., & Magurran, A. E. (1997b). Schooling preferences for familiar fish vary with group size in a wild guppy population. Proceedings of the Royal Society B: Biological Sciences, 264(1381), 547-551. https://doi.org/10.1098/rspb.1997.0078.
      Griffiths, S. W., Ojanguren, A. F., Orpwood, J. E., Magurran, A. E., & Armstrong, J. D. (2007). Familiarity-biased patterns of association shift with time among European minnows. Journal of Fish Biology, 71(6), 1602-1612. https://doi.org/10.1111/j.1095-8649.2007.01626.x.
      Griffiths, S. W., & Ward, A. (2011). Social recognition of conspecifics. In Fish cognition and behavior (pp. 186-216). Hoboken, NJ: Wiley. https://doi.org/10.1002/9781444342536.ch9.
      Grünbaum, D. (1998). Schooling as a strategy for taxis in a noisy environment. Evolutionary Ecology, 12(5), 503-522. https://doi.org/10.1023/A:1006574607845.
      Hasson, O. (1991). Pursuit-deterrent signals: Communication between prey and predator. Trends in Ecology & Evolution, 6(10), 325-329. https://doi.org/10.1016/0169-5347(91)90040-5.
      Hiatt, R. W., & Brock, V. E. (1948). On the herding of prey and the schooling of the black skipjack, Euthynnus yaito Kishinouye. Pacific Science, 2, 297-298.
      Hothorn, T., Van De Wiel, M. A., Hornik, K., & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28(8), 1-23. https://doi.org/10.18637/JSS.V028.I08.
      Kendal, J. R., Rendell, L., Pike, T. W., & Laland, K. N. (2009). Nine-spined sticklebacks deploy a hill-climbing social learning strategy. Behavioral Ecology, 20(2), 238-244. https://doi.org/10.1093/BEHECO/ARP016.
      Krause, J., Hartmann, N., & Pritchard, V. L. (1999). The influence of nutritional state on shoal choice in zebrafish. Danio rerio. Animal Behaviour, 57(4), 771-775. https://doi.org/10.1006/ANBE.1998.1010.
      Krause, J., Hoare, D. J., Croft, D. P., Lawrence, J., Ward, A., Ruxton, G. D., … James, R. (2000). Fish shoal composition: Mechanisms and constraints. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1456), 2011-2017. https://doi.org/10.1098/rspb.2000.1243.
      Madeira, N., & Oliveira, R. F. (2017). Long-term social recognition memory in zebrafish. Zebrafish, 14(4), 305-310. https://doi.org/10.1089/zeb.2017.1430.
      Magurran, A. E., Seghers, B. H., Shaw, P. W., & Carvalho, G. R. (1994). Schooling preferences for familiar fish in the guppy, Poecilia reticulata. Journal of Fish Biology, 45(3), 401-406. https://doi.org/10.1111/j.1095-8649.1994.tb01322.x.
      Manly, B. F. J. (2018). Randomization, bootstrap and Monte Carlo methods in biology. In Texts in Statistical Science (3rd ed.). New York: Chapman and Hall/CRC. https://doi.org/10.1201/9781315273075.
      Metcalfe, N. B., & Thomson, B. C. (1995). Fish recognize and prefer to shoal with poor competitors. Proceedings of the Royal Society of London. Series B: Biological Sciences, 259(1355), 207-210. https://doi.org/10.1098/RSPB.1995.0030.
      Milinski, M., Kulling, D., & Kettler, R. (1990). Tit for tat: Sticklebacks (Gasterosteus aculeatus) “trusting” a cooperating partner. Behavioral Ecology, 1, 7-11.
      Norton, W. H. J., Manceau, L., & Reichmann, F. (2019). The visually mediated social preference test: A novel technique to measure social behavior and behavioral disturbances in zebrafish. In F. Kobeissy (Ed.), Psychiatric disorders, Methods in molecular biology (Vol. 2011, pp. 121-132). New York: Humana. https://doi.org/10.1007/978-1-4939-9554-7_8.
      Ogi, A., Licitra, R., Naef, V., Marchese, M., Fronte, B., Gazzano, A., & Santorelli, F. M. (2021). Social preference tests in zebrafish: A systematic review. Frontiers in Veterinary Science, 7, 1239. https://doi.org/10.3389/FVETS.2020.590057.
      Pike, T. W., & Laland, K. N. (2010). Conformist learning in nine-spined sticklebacks' foraging decisions. Biology Letters, 6(4), 466-468. https://doi.org/10.1098/RSBL.2009.1014.
      Raihani, N. J., Grutter, A. S., & Bshary, R. (2012). Female cleaner fish cooperate more with unfamiliar males. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2479-2486. https://doi.org/10.1098/rspb.2012.0063.
      Ribeiro, D., Nunes, A. R., Gliksberg, M., Anbalagan, S., Levkowitz, G., & Oliveira, R. F. (2020). Oxytocin receptor signalling modulates novelty recognition but not social preference in zebrafish. Journal of Neuroendocrinology, 32(4), e12834. https://doi.org/10.1111/JNE.12834.
      Ruhl, N., & McRobert, S. P. (2005). The effect of sex and shoal size on shoaling behaviour in Danio rerio. Journal of Fish Biology, 67(5), 1318-1326. https://doi.org/10.1111/J.0022-1112.2005.00826.X.
      Saverino, C., & Gerlai, R. (2008). The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behavioural Brain Research, 191(1), 77-87. https://doi.org/10.1016/J.BBR.2008.03.013.
      Schmitt, R. J., & Strand, S. W. (1982). Cooperative foraging by yellowtail, Seriola lalandei (Carangidae), on two species of fish prey. Copeia, 1982(3), 714-717. https://doi.org/10.2307/1444679.
      Smythe, N. (1970). On the existence of “pursuit invitation” signals in mammals. The American Naturalist, 104(939), 491-494. https://doi.org/10.1086/282684.
      Snekser, J. L., McRobert, S. P., Murphy, C. E., & Clotfelter, E. D. (2006). Aggregation behavior in wildtype and transgenic zebrafish. Ethology, 112(2), 181-187. https://doi.org/10.1111/J.1439-0310.2006.01139.X.
      Snekser, J. L., Ruhl, N., Bauer, K., & McRobert, S. P. (2010). The influence of sex and phenotype on shoaling decisions in zebrafish. International Journal of Comparative Psychology, 23(1) https://escholarship.org/uc/item/8n68z3pf.
      Spence, R., Gerlach, G., Lawrence, C., & Smith, C. (2008). The behaviour and ecology of the zebrafish. Danio rerio. Biological Reviews, 83(1), 13-34. https://doi.org/10.1111/J.1469-185X.2007.00030.X.
      Strübin, C., Steinegger, M., & Bshary, R. (2011). On group living and collaborative hunting in the yellow saddle goatfish (Parupeneus cyclostomus). Ethology, 117(11), 961-969. https://doi.org/10.1111/J.1439-0310.2011.01966.X.
      TerMarsch, H., & Ward, J. (2020). Body-generated hydrodynamic flows influence male-male contests and female mate choice in a freshwater fish. Animal Behaviour, 169, 119-128. https://doi.org/10.1016/J.ANBEHAV.2020.09.005.
      Treherne, J. E., & Foster, W. A. (1981). Group transmission of predator avoidance behaviour in a marine insect: The trafalgar effect. Animal Behaviour, 29(3), 911-917. https://doi.org/10.1016/S0003-3472(81)80028-0.
      Vail, A. L., Manica, A., & Bshary, R. (2013). Referential gestures in fish collaborative hunting. Nature Communications, 4(1), 1-7. https://doi.org/10.1038/ncomms2781.
      Vital, C., & Martins, E. P. (2011). Strain differences in zebrafish (Danio rerio) social roles and their impact on group task performance. Journal of Comparative Psychology, 125(3), 278-285. https://doi.org/10.1037/A0023906.
      Ward, A. J. W., & Hart, P. J. B. (2005). Foraging benefits of shoaling with familiars may be exploited by outsiders. Animal Behaviour, 69(2), 329-335. https://doi.org/10.1016/j.anbehav.2004.06.005.
      Ward, A. J. W., Hart, P. J. B., & Krause, J. (2004). The effects of habitat-and diet-based cues on association preferences in three-spined sticklebacks. Behavioral Ecology, 15(6), 925-929. https://doi.org/10.1093/beheco/arh097.
      Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T., & Krause, J. (2011). Fast and accurate decisions through collective vigilance in fish shoals. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2312-2315. https://doi.org/10.1073/PNAS.1007102108/-/DCSUPPLEMENTAL.
      Ward, A. J. W., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B., & Krause, J. (2008). Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6948-6953. https://doi.org/10.1073/PNAS.0710344105.
      Webster, M. M., & Laland, K. N. (2013). The learning mechanism underlying public information use in Ninespine sticklebacks (Pungitius pungitius). Journal of Comparative Psychology, 127(2), 154. https://doi.org/10.1037/a0029602.
      Webster, M. M., & Hart, P. J. B. (2007). Prior association reduces kleptoparasitic prey competition in shoals of three-spined sticklebacks. Animal Behaviour, 74(2), 253-258. https://doi.org/10.1016/j.anbehav.2006.07.021.
      Woodland, D. J., Jaafar, Z., & Knight, M.-L. (1980). The “pursuit deterrent” function of alarm signals. The American Naturalist, 115(5), 748-753. https://doi.org/10.1086/283596.
      Wright, D., Ward, A. J. W., Croft, D. P., & Krause, J. (2006). Social organization, grouping, and domestication in fish. Zebrafish, 3(2), 141-155. https://doi.org/10.1089/ZEB.2006.3.141.
    • Grant Information:
      Oberlin College Ethyl, Geraldine & Pierre Smith Fund; Oberlin College Lee Drickamer '67 Research Support Fund
    • Contributed Indexing:
      Keywords: Danio rerio; familiarity; individual recognition; shoaling; social organization; zebrafish
    • Publication Date:
      Date Created: 20220209 Date Completed: 20220428 Latest Revision: 20220428
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/jfb.15008
    • Accession Number:
      35138635