TCP15 interacts with GOLDEN2-LIKE 1 to control cotyledon opening in Arabidopsis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology Country of Publication: England NLM ID: 9207397 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-313X (Electronic) Linking ISSN: 09607412 NLM ISO Abbreviation: Plant J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology, c1991-
    • Subject Terms:
    • Abstract:
      After germination, exposure to light promotes the opening and expansion of the cotyledons and the development of the photosynthetic apparatus in a process called de-etiolation. This process is crucial for seedling establishment and photoautotrophic growth. TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors are important developmental regulators of plant responses to internal and external signals that are grouped into two main classes. In this study, we identified GOLDEN2-LIKE 1 (GLK1), a key transcriptional regulator of photomorphogenesis, as a protein partner of class I TCPs during light-induced cotyledon opening and expansion in Arabidopsis. The class I TCP TCP15 and GLK1 are mutually required for cotyledon opening and the induction of SAUR and EXPANSIN genes, involved in cell expansion. TCP15 also participates in the expression of photosynthesis-associated genes regulated by GLK1, like LHCB1.4 and LHCB2.2. Furthermore, GLK1 and TCP15 bind to the same promoter regions of different target genes containing either GLK or TCP binding motifs and binding of TCP15 is affected in a GLK1-deficient background, suggesting that a complex between TCP15 and GLK1 participates in the induction of these genes. We postulate that GLK1 helps to recruit TCP15 for the modulation of cell expansion genes in cotyledons and that the functional interaction between these transcription factors may serve to coordinate the expression of cell expansion genes with that of genes involved in the development of the photosynthetic apparatus.
      (© 2022 Society for Experimental Biology and John Wiley & Sons Ltd.)
    • References:
      Abbas, M., Alabadí, D. & Blázquez, M. (2013) Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 4, 441.
      Ahmad, R., Liu, Y., Wang, T.J., Meng, Q., Yin, H., Wang, X. et al. (2019) GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiology, 179, 1844-1860.
      Ariel, F., Jegu, T., Latrasse, D., Romero-barrios, N., Christ, A., Benhamed, M. et al. (2014) Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Molecular Cell, 55, 383-396.
      Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. et al. (2010) Current protocols in molecular biology. New York: John Wiley & Sons.
      Bemer, M., van Dijk, A.D.J., Immink, R.G.H. & Angenent, G.C. (2017) Cross-family transcription factor interactions: an additional layer of gene regulation. Trends in Plant Science, 22, 66-80.
      Cabello, J.V., Giacomelli, J.I., Piattoni, C.V., Iglesias, A.A. & Chan, R.L. (2016) The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants. Journal of Biotechnology, 222, 73-83.
      Camoirano, A., Alem, A.L., Gonzalez, D.H. & Viola, I.L. (2021) Arabidopsis thaliana TCP15 interacts with the MIXTA-like transcription factor MYB106/NOECK. Plant Signaling & Behavior, 16, 1938432.
      Camoirano, A., Arce, A.L., Ariel, F.D., Alem, A.L., Gonzalez, D.H. & Viola, I.L. (2020) Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. Journal of Experimental Botany, 71, 5438-5453.
      Carrara, S. & Dornelas, M.C. (2020) TCP genes and the orchestration of plant architecture. Tropical Plant Biology, 14,1-10.
      Chang, S., Puryear, J. & Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11, 113-116.
      Charrier, B., Champion, A., Henry, Y. & Kreis, M. (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse. Plant Physiology, 130, 577-590.
      Chen, M., Chory, J. & Fankhauser, C. (2004) Light signal transduction in higher plants. Annual Review of Genetics, 38, 87-117.
      Choi, D., Cho, H.-T. & Lee, Y. (2006) Expansins: expanding importance in plant growth and development. Physiologia Plantarum, 126, 511-518.
      Clough, S.J. & Bent, A.F. (1999) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735-743.
      Cosgrove, D.J. (2000) Loosening of plant cell walls by expansins. Nature, 407, 321-326.
      Cubas, P., Lauter, N., Doebley, J. & Coen, E. (1999) The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18, 215-222.
      Davière, J.M., Wild, M., Regnault, T., Baumberger, N., Eisler, H., Genschik, P. et al. (2014) Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Current Biology, 24, 1923-1928.
      Dong, J., Sun, N., Yang, J., Deng, Z., Lan, J., Qin, G. et al. (2019) The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during De-etiolation in Arabidopsis. The Plant Cell, 31, 1155-1170.
      de Felippes, F.F. & Weigel, D. (2010) Transient assays for the analysis of miRNA processing and function. Methods in Molecular Biology, 592, 255-264.
      Ferrero, L.V., Gastaldi, V., Ariel, F.D., Viola, I.L. & Gonzalez, D.H. (2021) Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Molecular Biology, 105, 147-159.
      Ferrero, L.V., Viola, I.L., Ariel, F.D. & Gonzalez, D.H. (2019) Class I TCP transcription factors target the gibberellin biosynthesis gene GA20ox1 and the growth-promoting genes HBI1 and PRE6 during thermomorphogenic growth in Arabidopsis. Plant & Cell Physiology, 60, 1633-1645.
      Fitter, D.W., Martin, D.J., Copley, M.J., Scotland, R.W. & Langdale, J.A. (2002) GLK gene pairs regulate chloroplast development in diverse plant species. The Plant Journal, 31, 713-727.
      Garapati, P., Xue, G.P., Munné-Bosch, S. & Balazadeh, S. (2015) Transcription factor ATAF1 in arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiology, 168, 1122-1139.
      Gastaldi, V., Lucero, L.E., Ferrero, L.V., Ariel, F.D. & Gonzalez, D.H. (2020) Class-I TCP transcription factors activate the SAUR63 gene subfamily in gibberellin-dependent stamen filament elongation. Plant Physiology, 182, 2096-2110.
      Gietz, D., Jean, A.S., Woods, R.A. & Schiestl, R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20, 1425.
      Gommers, C.M.M. & Monte, E. (2018) Seedling establishment: a dimmer switch-regulated process between dark and light signaling. Plant Physiology, 176, 1061-1074. Available at:. http://www.plantphysiol.org/content/176/2/1061.abstract.
      Hellens, R.P., Anne Edwards, E., Leyland, N.R., Bean, S. & Mullineaux, P.M. (2000) pGreen: a versatile and flexible binary Ti vector for agrobacterium-mediated plant transformation. Plant Molecular Biology, 42, 819-832.
      Hull, G.A. & Devic, M. (1995) The beta-glucuronidase (gus) reporter gene system. Gene fusions; spectrophotometric, fluorometric, and histochemical detection. Methods in Molecular Biology, 49, 125-141.
      Jiao, Y., Lau, O.S. & Deng, X.W. (2007) Light-regulated transcriptional networks in higher plants. Nature Reviews. Genetics, 8, 217-230.
      Kakizaki, T., Matsumura, H., Nakayama, K., Che, F.S., Terauchi, R. & Inaba, T. (2009) Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiology, 151, 1339-1353.
      Kieffer, M., Master, V., Waites, R. & Davies, B. (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal, 68, 147-158.
      Klepikova, A.V., Kasianov, A.S., Gerasimov, E.S., Logacheva, M.D. & Penin, A.A. (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. The Plant Journal, 88, 1058-1070.
      Kobayashi, K., Sasaki, D., Noguchi, K., Fujinuma, D., Komatsu, H., Kobayashi, M. et al. (2013) Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors. Plant & Cell Physiology, 54, 1365-1377.
      Kubota, A., Ito, S., Shim, J.S., Johnson, R.S., Song, Y., Breton, G. et al. (2017) TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genetics, 13, e1006856.
      Lee, J., He, K., Štolc, V., Lee, H., Figueroa, P.M., Gao, Y. et al. (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell Online, 19, 731-749.
      Leister, D. & Kleine, T. (2016) Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants. Physiologia Plantarum, 157, 297-309.
      Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A. et al. (2008) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Current Biology, 18, 1815-1823.
      Li, M., Lee, K.P., Liu, T., Dogra, V., Duan, J., Li, M. et al. (2020) Immune regulators SIB1 and LSD1 antagonisticsally regulate PhANGs via the GLK transcription factors. bioRxiv. doi: 10.1101/2020.11.22.393603.
      Li, S. & Zachgo, S. (2013) TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. The Plant Journal, 76, 901-913.
      Liu, J., Cheng, X., Liu, P., Li, D., Chen, T., Gu, X. et al. (2017) MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLoS Genetics, 13, 1-22.
      Lucero, L.E., Manavella, P.A., Gras, D.E., Ariel, F.D. & Gonzalez, D.H. (2017) Class I and class II TCP transcription factors modulate SOC1-dependent flowering at multiple levels. Molecular Plant, 10, 1571-1574.
      Lucero, L.E., Uberti-Manassero, N.G., Arce, A.L., Colombatti, F., Alemano, S.G. & Gonzalez, D.H. (2015) TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. The Plant Journal, 84, 267-282.
      Lv, R., Li, Z., Li, M., Dogra, V., Lv, S., Liu, R. et al. (2019) Uncoupled expression of nuclear and plastid photosynthesis-associated genes contributes to cell death in a lesion mimic mutant. Plant Cell, 31, 210-230.
      Martin, G., Leivar, P., Ludevid, D., Tepperman, J.M., Quail, P.H. & Monte, E. (2016) Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nature Communications, 7, 11431.
      Mazzella, M.A., Casal, J.J., Muschietti, J.P. & Fox, A.R. (2014) Hormonal networks involved in apical hook development in darkness and their response to light. Frontiers in Plant Science, 5, 52.
      Murmu, J., Wilton, M., Allard, G., Pandeya, R., Desveaux, D., Singh, J. et al. (2014) Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botryti. Molecular Plant Pathology, 15, 174-184.
      Nagatoshi, Y., Mitsuda, N., Hayashi, M., Inoue, S., Okuma, E., Kubo, A. et al. (2016) GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proceedings of the National Academy of Sciences of the United States of America, 113, 4218-4223.
      Ni, F., Wu, L., Wang, Q., Hong, J., Qi, Y. & Zhou, X. (2017) Turnip yellow mosaic virus P69 interacts with and suppresses GLK transcription factors to cause pale-green symptoms in Arabidopsis. Molecular Plant, 10, 764-766.
      Ni, W., Xu, S.-L., Tepperman, J.M., Stanley, D.J., Maltby, D.A., Gross, J.D. et al. (2014) A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science, 344, 1160-1164.
      Nicolas, M. & Cubas, P. (2016) TCP factors: new kids on the signaling block. Current Opinion in Plant Biology, 33, 33-41.
      Peng, Y., Chen, L., Lu, Y., Wu, Y., Dumenil, J., Zhu, Z. et al. (2015) The ubiquitin receptors DA1, DAR1, and DAR2 redundantly regulate endoreduplication by modulating the stability of TCP14/15 in Arabidopsis. Plant Cell, 27, 649-662.
      Rauf, M., Arif, M., Dortay, H., Matallana-Ramírez, L.P., Waters, M.T., Gil Nam, H. et al. (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Reports, 14, 382-388.
      Ren, H. & Gray, W.M. (2015) SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant, 8, 1153-1164.
      Resentini, F., Felipo-Benavent, A., Colombo, L., Blázquez, M.A., Alabadí, D. & Masiero, S. (2015) TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Molecular Plant, 8, 482-485.
      Rossini, L., Cribb, L., Martin, D.J. & Langdale, J.A. (2001) The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell, 13, 1231-1244.
      Ruijter, J.M., Ruiz Villalba, A., Hellemans, J., Untergasser, A. & van den Hoff, M.J. (2015) Removal of between-run variation in a multi-plate qPCR experiment. Biomolecular Detection and Quantification, 5, 10-14.
      Savitch, L.V., Subramaniam, R., Allard, G.C. & Singh, J. (2007) The GLK1 “regulon” encodes disease defense related proteins and confers resistance to fusarium graminearum in Arabidopsis. Biochemical and Biophysical Research Communications, 359, 234-238.
      Shi, H., Lyu, M., Luo, Y., Liu, S., Li, Y., He, H. et al. (2018) Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 115, 6482-6487.
      Stortenbeker, N. & Bemer, M. (2019) The SAUR gene family: the plant's toolbox for adaptation of growth and development. Journal of Experimental Botany, 70, 17-27.
      Sun, J., Qi, L., Li, Y., Chu, J. & Li, C. (2012) Pif4-mediated activation of yucca8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genetics, 8, e1002594.
      Sun, N., Wang, J., Gao, Z., Dong, J., He, H., Terzaghi, W. et al. (2016) Arabidopsis saurs are critical for differential light regulation of the development of various organs. Proceedings of the National Academy of Sciences, 113, 6071-6076.
      Tamai, H., Iwabuchi, M. & Meshi, T. (2002) Arabidopsis GARP transcriptional activators interact with the pro-rich activation domain shared by G-box-binding bZIP factors. Plant & Cell Physiology, 43, 99-107.
      Uberti Manassero, N.G., Viola, I.L., Welchen, E. & Gonzalez, D.H. (2013) TCP transcription factors: architectures of plant form. Biomolecular Concepts, 4, 111-127.
      Vadde, B.V.L., Challa, K.R. & Nath, U. (2018) The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. The Plant Journal, 93, 259-269.
      Viola, I.L., Camoirano, A. & Gonzalez, D.H. (2015) Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis. Plant Physiology, 170, 74-85.
      Viola, I.L., Reinheimer, R., Ripoll, R., Manassero, N.G.U. & Gonzalez, D.H. (2012) Determinants of the DNA binding specificity of class I and class II TCP transcription factors. Journal of Biological Chemistry, 287, 347-356.
      Viola, I.L., Uberti Manassero, N.G., Ripoll, R. & Gonzalez, D.H. (2011) The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. The Biochemical Journal, 435, 143-155.
      Von Arnim, A. & Deng, X.W. (1996) Light control of seedling development. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 215-243.
      Wang, J., Sun, N., Zhang, F., Yu, R., Chen, H., Deng, X.W. et al. (2020) SAUR17 and SAUR50 differentially regulate PP2C-D1 during apical hook development and cotyledon opening in Arabidopsis. Plant Cell, 32, 3792-3811.
      Wang, Y. & Guo, H. (2019) On hormonal regulation of the dynamic apical hook development. The New Phytologist, 222, 1230-1234.
      Waters, M.T., Moylan, E.C. & Langdale, J.A. (2008) GLK transcription factors regulate chloroplast development in a cell-autonomous manner. The Plant Journal, 56, 432-444.
      Waters, M.T., Wang, P., Korkaric, M., Capper, R.G., Saunders, N.J. & Langdale, J.A. (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell, 21, 1109-1128.
      Wei, N., Kwok, S.F., Arnim, A.G. von, Lee, A., McNellis, T.W., Piekos, B. and Deng, X.W. (1994) Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell, 6, 629-643.
    • Contributed Indexing:
      Keywords: Arabidopsis thaliana; GLK1 transcription factor; TCP transcription factor; cotyledon development; de-etiolation; photomorphogenesis
    • Accession Number:
      0 (Arabidopsis Proteins)
      0 (GLK1 protein, Arabidopsis)
      0 (TCP15 protein, Arabidopsis)
      0 (Transcription Factors)
    • Publication Date:
      Date Created: 20220208 Date Completed: 20220503 Latest Revision: 20220506
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/tpj.15701
    • Accession Number:
      35132717