Intramolecular carbon isotope signals reflect metabolite allocation in plants.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 9882906 Publication Model: Print Cited Medium: Internet ISSN: 1460-2431 (Electronic) Linking ISSN: 00220957 NLM ISO Abbreviation: J Exp Bot Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Oxford University Press,
    • Subject Terms:
    • Abstract:
      Stable isotopes at natural abundance are key tools to study physiological processes occurring outside the temporal scope of manipulation and monitoring experiments. Whole-molecule carbon isotope ratios (13C/12C) enable assessments of plant carbon uptake yet conceal information about carbon allocation. Here, we identify an intramolecular 13C/12C signal at tree-ring glucose C-5 and C-6 and develop experimentally testable theories on its origin. More specifically, we assess the potential of processes within C3 metabolism for signal introduction based (inter alia) on constraints on signal propagation posed by metabolic networks. We propose that the intramolecular signal reports carbon allocation into major metabolic pathways in actively photosynthesizing leaf cells including the anaplerotic, shikimate, and non-mevalonate pathway. We support our theoretical framework by linking it to previously reported whole-molecule 13C/12C increases in cellulose of ozone-treated Betula pendula and a highly significant relationship between the intramolecular signal and tropospheric ozone concentration. Our theory postulates a pronounced preference for leaf cytosolic triose-phosphate isomerase to catalyse the forward reaction in vivo (dihydroxyacetone phosphate to glyceraldehyde 3-phosphate). In conclusion, intramolecular 13C/12C analysis resolves information about carbon uptake and allocation enabling more comprehensive assessments of carbon metabolism than whole-molecule 13C/12C analysis.
      (© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
    • References:
      Plant Cell Physiol. 2000 Aug;41(8):960-7. (PMID: 11038056)
      Proc Natl Acad Sci U S A. 1989 Oct;86(19):7374-7. (PMID: 2571991)
      Planta. 2005 Dec;223(1):20-7. (PMID: 16078071)
      Planta. 1990 Jan;180(2):198-204. (PMID: 24201945)
      Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3166-70. (PMID: 11607524)
      Plant Cell. 1999 Sep;11(9):1609-22. (PMID: 10488230)
      Tree Physiol. 2014 Aug;34(8):792-5. (PMID: 25117269)
      Plant Physiol. 1992 Feb;98(2):761-3. (PMID: 16668708)
      Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436. (PMID: 11337404)
      Biochim Biophys Acta. 1978 May 10;502(2):232-47. (PMID: 656403)
      Crit Rev Microbiol. 2015 Jun;41(2):172-89. (PMID: 23919299)
      Biochem J. 2011 May 15;436(1):15-34. (PMID: 21524275)
      J Exp Bot. 2021 Oct 26;72(20):7136-7144. (PMID: 34223885)
      Plant J. 2000 Apr;22(1):39-50. (PMID: 10792819)
      Annu Rev Plant Biol. 2012;63:637-61. (PMID: 22404461)
      Biochim Biophys Acta. 1969 Oct 21;189(2):207-21. (PMID: 5350447)
      Plant Physiol. 2004 Sep;136(1):2483-99. (PMID: 15375205)
      Planta. 2004 May;219(1):48-58. (PMID: 14991407)
      Physiol Plant. 2003 Apr;117(4):445-452. (PMID: 12675734)
      Oecologia. 1995 Sep;103(4):397-406. (PMID: 28306987)
      Antioxid Redox Signal. 2014 Sep 20;21(9):1389-421. (PMID: 24960279)
      Can J Biochem Physiol. 1958 Sep;36(9):985-91. (PMID: 13573220)
      Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:27-45. (PMID: 15012202)
      Biochim Biophys Acta. 1994 Jan 20;1210(3):369-72. (PMID: 7905749)
      Biochim Biophys Acta. 1957 Sep;25(3):642-3. (PMID: 13479439)
      Proc Natl Acad Sci U S A. 1989 Oct;86(19):7370-3. (PMID: 16594071)
      Plant Cell. 1991 Jul;3(7):719-35. (PMID: 1841726)
      Plant Physiol. 1988 Jun;87(2):311-9. (PMID: 16666140)
      J Exp Bot. 2011 Apr;62(7):2381-92. (PMID: 21511915)
      Proc Natl Acad Sci U S A. 1961 May 15;47:623-32. (PMID: 13681011)
      Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5226-31. (PMID: 20194759)
      Sci Rep. 2018 Mar 22;8(1):5048. (PMID: 29567963)
      J Biol Chem. 1979 Apr 25;254(8):2689-96. (PMID: 429312)
      J Biol Chem. 1955 Apr;213(2):843-54. (PMID: 14367345)
      Plant Cell. 1995 Jul;7(7):907-919. (PMID: 12242393)
      Plant Signal Behav. 2012 Jul;7(7):767-70. (PMID: 22751307)
      Can J Biochem Physiol. 1958 Feb;36(2):187-93. (PMID: 13500255)
      New Phytol. 2018 Apr;218(1):94-106. (PMID: 29344970)
      Plant Physiol. 1985 Apr;77(4):944-7. (PMID: 16664168)
      Can J Biochem Physiol. 1954 May;32(3):170-7. (PMID: 13150239)
      Biochim Biophys Acta. 1990 Nov 9;1036(2):138-42. (PMID: 2223831)
      Plant Physiol. 2019 Jun;180(2):783-792. (PMID: 30886114)
      Plant Physiol. 2001 Apr;125(4):1891-900. (PMID: 11299368)
      Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:273-298. (PMID: 15012290)
      Plant Physiol. 1987 May;84(1):58-60. (PMID: 16665405)
      Prog Lipid Res. 2002 Mar;41(2):182-96. (PMID: 11755683)
      Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8821-5. (PMID: 1681544)
      J Exp Bot. 2016 Apr;67(9):2901-11. (PMID: 27053722)
      Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1903-7. (PMID: 10677554)
      Arch Biochem Biophys. 1956 Apr;61(2):422-30. (PMID: 13314625)
      Isotopes Environ Health Stud. 2015;51(1):155-99. (PMID: 25894429)
      New Phytol. 1990 Nov;116(3):465-474. (PMID: 33874106)
      Plant Mol Biol. 2001 Nov;47(4):499-506. (PMID: 11669575)
      Open Biol. 2014 Mar 05;4:130232. (PMID: 24598263)
      Plant Cell. 2017 Oct;29(10):2537-2551. (PMID: 28947491)
      Plant J. 2006 Apr;46(1):14-33. (PMID: 16553893)
      Front Plant Sci. 2013 Mar 27;4:62. (PMID: 23543266)
      J Exp Bot. 2021 May 28;72(12):4186-4189. (PMID: 33739373)
      J Plant Physiol. 2016 Sep 1;202:34-44. (PMID: 27450492)
      Plant Physiol. 2011 Sep;157(1):86-95. (PMID: 21730197)
      FEBS Lett. 2009 Mar 18;583(6):983-91. (PMID: 19223001)
      Plant J. 2010 May 1;62(4):641-52. (PMID: 20202167)
      Biochim Biophys Acta. 1971 Apr 14;235(1):237-44. (PMID: 5089710)
      Plant Physiol. 1991 Sep;97(1):463-6. (PMID: 16668410)
      J Plant Physiol. 2014 Mar 1;171(5):19-25. (PMID: 24484954)
      Tree Physiol. 1996 Jul;16(7):649-54. (PMID: 14871703)
      Plant Physiol. 2002 Aug;129(4):1866-71. (PMID: 12177500)
      Front Plant Sci. 2016 Dec 06;7:1817. (PMID: 27999583)
      Plant Mol Biol. 1996 Apr;31(1):69-76. (PMID: 8704160)
      Can J Biochem Physiol. 1955 Jul;33(4):658-66. (PMID: 13240539)
      Plant Cell. 1997 Mar;9(3):453-62. (PMID: 9090886)
      Plant Physiol. 2007 May;144(1):367-79. (PMID: 17384165)
      Science. 1953 May 22;117(3047):553-4. (PMID: 13056609)
      Biosci Biotechnol Biochem. 2015;79(3):402-9. (PMID: 25402448)
      Plant Cell Physiol. 2007 Mar;48(3):441-50. (PMID: 17283014)
      Annu Rev Plant Biol. 2012;63:73-105. (PMID: 22554242)
      Planta. 1991 Jan;183(2):202-8. (PMID: 24193621)
      Plant Physiol. 1989 Oct;91(2):679-84. (PMID: 16667087)
      Can J Biochem Physiol. 1956 May;34(3):405-13. (PMID: 13316564)
    • Grant Information:
      2013-05219 Swedish Research Council; Knut and Alice Wallenberg Foundation; 2015.0047 'NMR for Life'; Kempe foundations; DE-FG02-91ER2002 U.S. Department of Energy; Michigan AgBioResearch
    • Contributed Indexing:
      Keywords: Carbon allocation; carbon stable isotopes; intramolecular isotope analysis; long time scales; ozone stress; primary carbon metabolism; triose-phosphate isomerase
    • Accession Number:
      0 (Carbon Isotopes)
      7440-44-0 (Carbon)
      IY9XDZ35W2 (Glucose)
    • Publication Date:
      Date Created: 20220127 Date Completed: 20220420 Latest Revision: 20220716
    • Publication Date:
      20240829
    • Accession Number:
      PMC9015809
    • Accession Number:
      10.1093/jxb/erac028
    • Accession Number:
      35084456