Dissection and Reconstitution Provide Insights into Electron Transport in the Membrane-Bound Aldehyde Dehydrogenase Complex of Gluconacetobacter diazotrophicus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 2985120R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5530 (Electronic) Linking ISSN: 00219193 NLM ISO Abbreviation: J Bacteriol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, DC : American Society for Microbiology
    • Subject Terms:
    • Abstract:
      Acetic acid bacteria catalyze the two-step oxidation of ethanol to acetic acid using the membrane-bound enzymes pyrroloquinoline quinone-dependent alcohol dehydrogenase and molybdopterin-dependent aldehyde dehydrogenase (ALDH). Although the reducing equivalents from the substrate are transferred to ubiquinone in the membrane, intramolecular electron transport in ALDH is not understood. Here, we purified the AldFGH complex, the membrane-bound ALDH that is physiologically relevant to acetic acid fermentation in Gluconacetobacter diazotrophicus strain PAL5. The purified AldFGH complex showed acetaldehyde:ubiquinone (Q 2 ) oxidoreductase activity. c -type cytochromes of the AldFGH complex (in the AldF subunit) were reduced by acetaldehyde. Next, we genetically dissected the AldFGH complex into AldGH and AldF units and reconstituted them. The AldGH subcomplex showed acetaldehyde:ferricyanide oxidoreductase activity but not Q 2 reductase activity. The ALDH activity of AldGH was not found in membranes but was found in the soluble fraction of the recombinant strain, suggesting that the AldF subunit is responsible for membrane binding of the AldFGH complex. The absorption spectra of the purified AldGH subcomplex suggested the presence of an [Fe-S] cluster, which can be reduced by acetaldehyde. The AldFGH complex reconstituted from the AldGH subcomplex and AldF showed Q 2 reductase activity. We propose a model in which electrons from the substrate are abstracted by a molybdopterin in the AldH subunit and transferred to the [Fe-S] cluster(s) in the AldG subunit, followed by electron transport to c -type cytochrome centers in the AldF subunit, which is the site of ubiquinone reduction in the membrane. IMPORTANCE Two membrane-bound enzymes of acetic acid bacteria, pyrroloquinoline quinone-dependent alcohol dehydrogenase and molybdopterin-dependent aldehyde dehydrogenase (ALDH), are responsible for vinegar production. Upon the oxidation of acetaldehyde, ALDH reduces ubiquinone in the cytoplasmic membrane. ALDH is an enzyme complex of three subunits. Here, we tried to understand how ALDH works by using a classical biochemical approach and genetic engineering to dissect the enzyme complex into soluble and membrane-bound parts. The soluble part had limited activity in vitro and did not reduce ubiquinone. However, the enzyme complex reconstituted from the soluble and membrane-bound parts showed ubiquinone reduction activity. The proposed working model of ALDH provides a better understanding of how the enzyme works in the vinegar fermentation process.
    • References:
      BMC Struct Biol. 2011 Mar 03;11:13. (PMID: 21371326)
      Appl Microbiol Biotechnol. 2010 Jan;85(3):741-51. (PMID: 19711069)
      Nature. 1970 Aug 15;227(5259):680-5. (PMID: 5432063)
      Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6122-6. (PMID: 2068092)
      Appl Microbiol Biotechnol. 2018 May;102(10):4549-4561. (PMID: 29616313)
      FEBS Lett. 1981 Aug 3;130(2):179-83. (PMID: 6793395)
      J Mol Biol. 1983 Jun 5;166(4):557-80. (PMID: 6345791)
      Microbiology (Reading). 2001 Aug;147(Pt 8):2065-2075. (PMID: 11495985)
      Anal Biochem. 1987 Feb 15;161(1):1-15. (PMID: 3578775)
      Appl Environ Microbiol. 2013 Mar;79(5):1654-60. (PMID: 23275508)
      Gene. 1994 Jul 22;145(1):69-73. (PMID: 8045426)
      J Bacteriol. 1995 Sep;177(17):5048-55. (PMID: 7665483)
      Anal Biochem. 1975 Mar;64(1):136-41. (PMID: 1137083)
      J Mol Biol. 1969 May 14;41(3):459-72. (PMID: 4896022)
      Appl Microbiol Biotechnol. 2021 Mar;105(6):2341-2350. (PMID: 33591385)
      Arch Microbiol. 1997 Aug;168(2):81-91. (PMID: 9238099)
      Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648-52. (PMID: 377280)
      Microbiol Mol Biol Rev. 2009 Sep;73(3):510-28, Table of Contents. (PMID: 19721088)
      Methods Enzymol. 1979;55:627-40. (PMID: 37404)
      Appl Microbiol Biotechnol. 2010 May;86(5):1257-65. (PMID: 20306188)
      Adv Microb Physiol. 1994;36:247-301. (PMID: 7942316)
      Proc Natl Acad Sci U S A. 1990 Dec;87(24):9863-7. (PMID: 2263637)
      J Biol Chem. 1996 Mar 1;271(9):4850-7. (PMID: 8617755)
      Int J Food Microbiol. 2010 Mar 31;138(1-2):39-49. (PMID: 20096472)
      J Bacteriol. 2010 Nov;192(21):5718-24. (PMID: 20802042)
      Stand Genomic Sci. 2010 Jun 15;2(3):309-17. (PMID: 21304715)
      Anal Biochem. 1976 Sep;75(1):168-76. (PMID: 822747)
      Biosci Biotechnol Biochem. 1997 Aug;61(8):1244-51. (PMID: 9301103)
      Mol Microbiol. 2020 May;113(5):861-871. (PMID: 31971282)
      Int J Food Microbiol. 2008 Jun 30;125(1):71-8. (PMID: 18321602)
      Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8846-51. (PMID: 8799115)
    • Contributed Indexing:
      Keywords: Gluconacetobacter diazotrophicus; [Fe-S] cluster; acetic acid fermentation; cytochrome c; membrane-bound aldehyde dehydrogenase
    • Accession Number:
      0 (Aldehydes)
      0 (Cytochromes)
      1339-63-5 (Ubiquinone)
      72909-34-3 (PQQ Cofactor)
      EC 1.1.1.1 (Alcohol Dehydrogenase)
      EC 1.2.1.3 (Aldehyde Dehydrogenase)
      GO1N1ZPR3B (Acetaldehyde)
      Q40Q9N063P (Acetic Acid)
    • Subject Terms:
      Gluconacetobacter diazotrophicus
    • Publication Date:
      Date Created: 20220124 Date Completed: 20220421 Latest Revision: 20220916
    • Publication Date:
      20240829
    • Accession Number:
      PMC8923213
    • Accession Number:
      10.1128/jb.00558-21
    • Accession Number:
      35072518