Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Sugar Metabolism and Transcriptome Analysis Reveal Key Sugar Transporters during Camellia oleifera Fruit Development.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
- Publication Information:
Original Publication: Basel, Switzerland : MDPI, [2000-
- Subject Terms:
- Abstract:
Camellia oleifera is a widely planted woody oil crop with economic significance because it does not occupy cultivated land. The sugar-derived acetyl-CoA is the basic building block in fatty acid synthesis and oil synthesis in C. oleifera fruit; however, sugar metabolism in this species is uncharacterized. Herein, the changes in sugar content and metabolic enzyme activity and the transcriptomic changes during C. oleifera fruit development were determined in four developmental stages (CR6: young fruit formation; CR7: expansion; CR9: oil transformation; CR10: ripening). CR7 was the key period of sugar metabolism since it had the highest amount of soluble sugar, sucrose, and glucose with a high expression of genes related to sugar transport (four sucrose transporters (SUTs) or and one SWEET-like gene, also known as a sugar, will eventually be exported transporters) and metabolism. The significant positive correlation between their expression and sucrose content suggests that they may be the key genes responsible for sucrose transport and content maintenance. Significantly differentially expressed genes enriched in the starch and sucrose metabolism pathway were observed in the CR6 versus CR10 stages according to KEGG annotation. The 26 enriched candidate genes related to sucrose metabolism provide a molecular basis for further sugar metabolism studies in C. oleifera fruit.
- References:
Planta. 2007 Mar;225(4):907-18. (PMID: 17033812)
Curr Opin Plant Biol. 2010 Jun;13(3):288-98. (PMID: 20303321)
BMC Genomics. 2017 Jul 20;18(1):546. (PMID: 28728593)
Proteomics. 2011 May;11(9):1619-29. (PMID: 21413150)
Tree Physiol. 2014 Jan;34(1):29-38. (PMID: 24420388)
Plant Physiol Biochem. 2010 Dec;48(12):961-5. (PMID: 20951055)
Tree Physiol. 2019 Feb 1;39(2):284-299. (PMID: 30388274)
Plant Cell. 2015 Mar;27(3):607-19. (PMID: 25794936)
Plant Physiol Biochem. 2019 Nov;144:455-465. (PMID: 31655344)
Plant Cell. 2000 Jul;12(7):1153-64. (PMID: 10899981)
Nature. 2010 Nov 25;468(7323):527-32. (PMID: 21107422)
Plant Biol (Stuttg). 2017 May;19(3):315-326. (PMID: 28075052)
Plant Physiol Biochem. 2016 Dec;109:442-451. (PMID: 27816825)
Plant Cell Physiol. 2010 Jan;51(1):114-22. (PMID: 19965875)
Front Plant Sci. 2016 Sep 22;7:1425. (PMID: 27713754)
Front Plant Sci. 2020 Aug 19;11:1269. (PMID: 32973833)
Int J Mol Sci. 2012;13(8):9460-77. (PMID: 22949808)
BMC Genomics. 2019 Jan 15;20(1):45. (PMID: 30646841)
Front Plant Sci. 2019 Feb 08;10:95. (PMID: 30800137)
J Exp Bot. 2009;60(3):881-92. (PMID: 19181865)
Huan Jing Ke Xue. 2018 Jun 8;39(6):2837-2844. (PMID: 29965642)
Front Plant Sci. 2020 Apr 30;11:321. (PMID: 32457764)
Plant Mol Biol. 2015 Aug;88(6):591-608. (PMID: 26216393)
Plant Physiol. 2003 Jan;131(1):228-36. (PMID: 12529530)
J Exp Bot. 2015 Aug;66(15):4807-19. (PMID: 26022258)
Annu Rev Biochem. 2015;84:865-94. (PMID: 25747398)
J Exp Bot. 2014 Apr;65(7):1905-16. (PMID: 24591056)
Tree Physiol. 2013 Nov;33(11):1216-28. (PMID: 24271085)
Front Plant Sci. 2019 Jan 09;9:1946. (PMID: 30687351)
J Nutr Sci Vitaminol (Tokyo). 2015;61 Suppl:S100-2. (PMID: 26598814)
Biochem J. 1954 Jul;57(3):508-14. (PMID: 13181867)
Plant Sci. 2015 Sep;238:262-72. (PMID: 26259193)
Genes (Basel). 2017 Mar 28;8(4):. (PMID: 28350372)
Nucleic Acids Res. 2001 May 1;29(9):e45. (PMID: 11328886)
Science. 2012 Jan 13;335(6065):207-11. (PMID: 22157085)
Plant Cell Physiol. 2020 Aug 1;61(8):1493-1506. (PMID: 32396606)
BMC Plant Biol. 2020 May 6;20(1):191. (PMID: 32375636)
Mol Cells. 2019 Oct 31;42(10):711-720. (PMID: 31607684)
J Plant Physiol. 2019 Sep;240:153016. (PMID: 31400718)
PLoS One. 2012;7(3):e33055. (PMID: 22412983)
J Exp Bot. 2012 May;63(9):3367-77. (PMID: 22140246)
Plant Physiol. 2011 Jan;155(1):64-9. (PMID: 20971857)
Int J Mol Sci. 2021 Jul 06;22(14):. (PMID: 34298903)
Tree Physiol. 2001 May;21(7):465-72. (PMID: 11340047)
J Plant Physiol. 2013 May 15;170(8):731-40. (PMID: 23499454)
Plant J. 2002 Apr;30(2):165-75. (PMID: 12000453)
Plant Reprod. 2018 Sep;31(3):263-290. (PMID: 29728792)
Indian J Exp Biol. 2013 Dec;51(12):1130-6. (PMID: 24579380)
Plant Physiol. 2017 Aug;174(4):2348-2362. (PMID: 28600345)
Phytochemistry. 2010 Oct;71(14-15):1610-4. (PMID: 20696445)
Plant Biol (Stuttg). 2012 Mar;14(2):325-36. (PMID: 21972845)
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10876-80. (PMID: 12149483)
Gene. 2020 Jun 5;742:144584. (PMID: 32173541)
Curr Opin Biotechnol. 2013 Apr;24(2):229-38. (PMID: 23219183)
Plant Biotechnol J. 2019 Mar;17(3):625-637. (PMID: 30133123)
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13979-84. (PMID: 11087840)
Plant Physiol. 2014 Feb;164(2):777-89. (PMID: 24381066)
Curr Biol. 2013 Apr 22;23(8):697-702. (PMID: 23583552)
- Contributed Indexing:
Keywords: Camellia oleifera; RNA-seq; enzymes in sucrose metabolism; fruit development; sucrose transport; sugar content
- Accession Number:
0 (Monosaccharide Transport Proteins)
0 (Sugars)
- Publication Date:
Date Created: 20220121 Date Completed: 20220203 Latest Revision: 20220203
- Publication Date:
20231215
- Accession Number:
PMC8775869
- Accession Number:
10.3390/ijms23020822
- Accession Number:
35055010
No Comments.