State anxiety alters the neural oscillatory correlates of predictions and prediction errors during reward-based learning.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Academic Press Country of Publication: United States NLM ID: 9215515 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-9572 (Electronic) Linking ISSN: 10538119 NLM ISO Abbreviation: Neuroimage Subsets: MEDLINE
    • Publication Information:
      Original Publication: Orlando, FL : Academic Press, c1992-
    • Subject Terms:
    • Abstract:
      Anxiety influences how the brain estimates and responds to uncertainty. The consequences of these processes on behaviour have been described in theoretical and empirical studies, yet the associated neural correlates remain unclear. Rhythm-based accounts of Bayesian predictive coding propose that predictions in generative models of perception are represented in alpha (8-12 Hz) and beta oscillations (13-30 Hz). Updates to predictions are driven by prediction errors weighted by precision (inverse variance) encoded in gamma oscillations (>30 Hz) and associated with the suppression of beta activity. We tested whether state anxiety alters the neural oscillatory activity associated with predictions and precision-weighted prediction errors (pwPE) during learning. Healthy human participants performed a probabilistic reward-based learning task in a volatile environment. In our previous work, we described learning behaviour in this task using a hierarchical Bayesian model, revealing more precise (biased) beliefs about the tendency of the reward contingency in state anxiety, consistent with reduced learning in this group. The model provided trajectories of predictions and pwPEs for the current study, allowing us to assess their parametric effects on the time-frequency representations of EEG data. Using convolution modelling for oscillatory responses, we found that, relative to a control group, state anxiety increased beta activity in frontal and sensorimotor regions during processing of pwPE, and in fronto-parietal regions during encoding of predictions. No effects of state anxiety on gamma modulation were found. Our findings expand prior evidence on the oscillatory representations of predictions and pwPEs into the reward-based learning domain. The results suggest that state anxiety modulates beta-band oscillatory correlates of pwPE and predictions in generative models, providing insights into the neural processes associated with biased belief updating and poorer learning.
      Competing Interests: Declaration of Competing Interest The authors declare no competing financial interests.
      (Copyright © 2022. Published by Elsevier Inc.)
    • Contributed Indexing:
      Keywords: Anxiety; Convolution; EEG; Oscillations; Predictive coding; Uncertainty
    • Publication Date:
      Date Created: 20220112 Date Completed: 20220307 Latest Revision: 20220307
    • Publication Date:
      20231215
    • Accession Number:
      10.1016/j.neuroimage.2022.118895
    • Accession Number:
      35017125