Biocides in antifouling paint formulations currently registered for use.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several nontarget organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environmental occurrence and toxicity of biocides currently used in antifouling paints, the specific active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations, and safety data sheets from paint manufacturers around the world. The results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT, and cuprous thiocyanate were the most frequent ones, with mean relative concentrations of 35.9 ± 12.8%, 2.9 ± 1.6%, 4.0 ± 5.3%, 5.4 ± 2.0%, 1.9 ± 1.9%, and 18.1 ± 8.0% (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as an active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.
      (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Abreu FEL, Lima Da Silva JN, Castro ÍB, Fillmann G (2020) Are antifouling residues a matter of concern in the largest South American port? J Hazard Mater 398:122937. https://doi.org/10.1016/j.jhazmat.2020.122937. (PMID: 10.1016/j.jhazmat.2020.122937)
      Amara I, Miled W, Slama RB, Ladhari N (2018) Antifouling processes and toxicity effects of antifouling paints on marine environment. A Review Environ Toxicol Pharmacol 57:115–130. https://doi.org/10.1016/j.etap.2017.12.001. (PMID: 10.1016/j.etap.2017.12.001)
      ANVISA (2017) Listas de ingredientes ativos com uso autorizado e banidos no Brasil. In: Agência Nacional de Vigilância Sanitária - Anvisa. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2017/listas-de-ingredientes-ativos-com-uso-autorizado-e-banidos-no-brasil . Accessed 26 May 2021.
      APVMA (2018a) Public chemical registration information system-PubCRIS database. In: Public Chemical Registration Information System Search. https://portal.apvma.gov.au/pubcris?p_auth=mNNID8Yv&p_p_id=pubcrisportlet_WAR_pubcrisportlet&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_pos=3&p_p_col_count=5&_pubcrisportlet_WAR_pubcrisportlet_javax.portlet.action=search . Accessed 25 Oct 2018.
      APVMA (2018b) Active constituents exempt from the requirements of APVMA approval for use in agricultural or veterinary chemical products. In: Australian Pesticides and Veterinary Medicines Authority. https://apvma.gov.au/node/4176 . Accessed 1 Oct 2021.
      Arrhenius Å, Backhaus T, Hilvarsson A et al (2014) A novel bioassay for evaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms. Mar Pollut Bull 87:292–299. https://doi.org/10.1016/j.marpolbul.2014.07.011. (PMID: 10.1016/j.marpolbul.2014.07.011)
      Artifon V, Castro ÍB, Fillmann G (2016) Spatiotemporal appraisal of TBT contamination and imposex along a tropical bay (Todos os Santos Bay, Brazil). Environ Sci Pollut Res 23:16047–16055. https://doi.org/10.1007/s11356-016-6745-7. (PMID: 10.1007/s11356-016-6745-7)
      Batista RM, Castro IB, Fillmann G (2016) Imposex and butyltin contamination still evident in Chile after TBT global ban. Sci Total Environ 566–567:446–453. https://doi.org/10.1016/j.scitotenv.2016.05.039. (PMID: 10.1016/j.scitotenv.2016.05.039)
      Batista-Andrade JA, Caldas SS, Batista RM et al (2018) From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama. Environ Pollut 234:243–252. https://doi.org/10.1016/j.envpol.2017.11.063. (PMID: 10.1016/j.envpol.2017.11.063)
      Bighiu MA, Eriksson-Wiklund A-K, Eklund B (2016) Biofouling of leisure boats as a source of metal pollution. Environ Sci Pollut Res 24:997–1006. https://doi.org/10.1007/s11356-016-7883-7. (PMID: 10.1007/s11356-016-7883-7)
      Bleile H, Rodgers SD (2001) Marine coatings. In: Buschow KHJ, Cahn RW, Flemings MC et al (eds) Encyclopedia of Materials: Science and Technology. Elsevier, Oxford, pp 5174–5185. (PMID: 10.1016/B0-08-043152-6/00899-8)
      Bowman JC, Readman JW, Zhou JL (2003) Seasonal variability in the concentrations of Irgarol 1051 in Brighton Marina, UK; including the impact of dredging. Mar Pollut Bull 46:444–451. https://doi.org/10.1016/S0025-326X(02)00464-2. (PMID: 10.1016/S0025-326X(02)00464-2)
      Briant N, Bancon-Montigny C, Freydier R et al (2016) Behaviour of butyltin compounds in the sediment pore waters of a contaminated marina (Port Camargue, South of France). Chemosphere 150:123–129. https://doi.org/10.1016/j.chemosphere.2016.02.022. (PMID: 10.1016/j.chemosphere.2016.02.022)
      Brooks S, Waldock M (2009) The use of copper as a biocide in marine antifouling paints. In: Hellio C, Yebra D (eds) Advances in marine antifouling coatings and technologies. Woodhead Publishing, pp 492–521. (PMID: 10.1533/9781845696313.3.492)
      Cai Y, Apell JN, Pflug NC et al (2021) Photochemical fate of medetomidine in coastal and marine environments. Water Res 191:116791. https://doi.org/10.1016/j.watres.2020.116791. (PMID: 10.1016/j.watres.2020.116791)
      Castro ÍB, Iannacone J, Santos S, Fillmann G (2018) TBT is still a matter of concern in Peru. Chemosphere 205:253–259. https://doi.org/10.1016/j.chemosphere.2018.04.097. (PMID: 10.1016/j.chemosphere.2018.04.097)
      Castro ÍB, Westphal E, Fillmann G (2011) Third generation antifouling paints: new biocides in the aquatic environment. Quim Nova 34:1021–1031. https://doi.org/10.1590/S0100-40422011000600020. (PMID: 10.1590/S0100-40422011000600020)
      Cavalheiro J, Sola C, Baldanza J et al (2016) Assessment of background concentrations of organometallic compounds (methylmercury, ethyllead and butyl- and phenyltin) in French aquatic environments. Water Res 94:32–41. https://doi.org/10.1016/j.watres.2016.02.010. (PMID: 10.1016/j.watres.2016.02.010)
      Chen L, Lam JCW (2017) SeaNine 211 as antifouling biocide: a coastal pollutant of emerging concern. J Environ Sci (china) 61:68–79. https://doi.org/10.1016/j.jes.2017.03.040. (PMID: 10.1016/j.jes.2017.03.040)
      Claudi R, de Oliveira MD (2015) Chemical strategies for the control of the golden mussel (Limnoperna fortunei) in industrial facilities. In: Boltovskoy D (ed) Limnoperna Fortunei: the ecology, distribution and control of a swiftly spreading invasive fouling mussel. Springer International Publishing, Cham, pp 417–441.
      Costa LDF, Mirlean N, Wasserman JC, Wallner-Kersanach M (2016) Variability of labile metals in estuarine sediments in areas under the influence of antifouling paints, southern Brazil. Environ Earth Sci 75. https://doi.org/10.1007/s12665-016-5355-5.
      Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull 62:453–465. https://doi.org/10.1016/j.marpolbul.2011.01.012. (PMID: 10.1016/j.marpolbul.2011.01.012)
      de Campos BG, Figueiredo J, Perina F et al (2021) Occurrence, effects and environmental risk of antifouling biocides (EU PT21): are marine ecosystems threatened? Crit Rev Environ Sci Technol 1–32. https://doi.org/10.1080/10643389.2021.1910003.
      Directive 98/8/EC of The European Parliament and of the Council (1998) Concerning the placing of biocidal products on the market. In: Official Journal of the European Communities. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31998L0008&from=EN . Accessed 1 Nov 2019.
      ECHA (2019) Information on biocides. In: European Chemicals Agency. https://echa.europa.eu/es/information-on-chemicals/biocidal-active-substances . Accessed 24 Jul 2019.
      ECHA (2021a) Tralopyril - Information on biocides. In: Active substance factsheet. https://echa.europa.eu/information-on-chemicals/biocidal-active-substances/-/disas/factsheet/1403/PT21 . Accessed 1 Oct 2021.
      ECHA (2021b) Medetomidine - Information on biocides. In: Active substance factsheet. https://echa.europa.eu/information-on-chemicals/biocidal-active-substances/-/disas/factsheet/1327/PT21 . Accessed 1 Oct 2021.
      ECHA (2021c) Substance Infocard. Zinc oxide. In: European Chemicals Agency - Substance Information. https://echa.europa.eu/substance-information/-/substanceinfo/100.013.839 . Accessed 1 Oct 2021.
      Eguchi S, Harino H, Yamamoto Y (2010) Assessment of antifouling biocides contaminations in Maizuru Bay, Japan. Arch Environ Contam Toxicol 58:684–693. https://doi.org/10.1007/s00244-009-9394-8. (PMID: 10.1007/s00244-009-9394-8)
      Eklund B, Eklund D (2014) Pleasure boatyard soils are often highly contaminated. Environ Manage 53:930–946. https://doi.org/10.1007/s00267-014-0249-3. (PMID: 10.1007/s00267-014-0249-3)
      Eldredge LG, Carlton JT (2002) Hawaiian marine bioinvasions: a preliminary assessment. Pac Sci 56:211–212. https://doi.org/10.1353/psc.2002.0012. (PMID: 10.1353/psc.2002.0012)
      EPA (2018) Product label search | pesticide labels | pesticides | US EPA. In: EPA United State Environmental Protection Agency. https://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1 . Accessed 24 Oct 2018.
      European Parliament and of the Council (2012) Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products Text with EEA relevance.
      Guardiola FA, Cuesta A, Meseguer J, Esteban MA (2012) Risks of using antifouling biocides in aquaculture. Int J Mol Sci 13:1541–1560. https://doi.org/10.3390/ijms13021541. (PMID: 10.3390/ijms13021541)
      Harino H (2017) Emerging issues on contamination and adverse effects by alternative antifouling paints in the marine environments. In: Horiguchi T (ed) Biological Effects by Organotins. Springer Japan, Tokyo, pp 43–70.
      Harino H, Kitano M, Mori Y et al (2005) Degradation of antifouling booster biocides in water. J Mar Biol Ass UK 85:33–38. https://doi.org/10.1017/S0025315405010799h. (PMID: 10.1017/S0025315405010799h)
      Harino H, Yamamoto Y, Eguchi S et al (2007) Concentrations of antifouling biocides in sediment and mussel samples collected from otsuchi Bay. Japan Arch Environ Contam Toxicol 52:179. https://doi.org/10.1007/s00244-006-0087-2. (PMID: 10.1007/s00244-006-0087-2)
      Hilvarsson A, Ohlauson C, Blanck H, Granmo Å (2009) Bioaccumulation of the new antifoulant medetomidine in marine organisms. Mar Environ Res 68:19–24. https://doi.org/10.1016/j.marenvres.2009.03.007. (PMID: 10.1016/j.marenvres.2009.03.007)
      HSE (2018) HSE: Information about health and safety at work. http://www.hse.gov.uk/ . Accessed 24 Oct 2018.
      HSE (2021) The GB list of biocidal active substances. In: Health and Safety Executive. https://www.hse.gov.uk/biocides/uk-list-of-active-substances.xlsx . Accessed 1 Sep 2021.
      IMO (2008) International convention on the control of harmful anti-fouling systems on ships (AFS). In: International Maritime Organization. http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-on-the-Control-of-Harmful-Anti-fouling-Systems-on-Ships-(AFS).aspx . Accessed 21 May 2016.
      I-Tech AB (2020) Quantifying the scale of the barnacle fouling problem on the global shipping fleet. https://selektope.com/wp-content/uploads/2020/10/ITECH-WHITE-PAPER_June-2020-1.pdf . Accessed 11 Jun 2021.
      Jacobson AH, Willingham GL (2000) Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci Total Environ 258:103–110. https://doi.org/10.1016/S0048-9697(00)00511-8. (PMID: 10.1016/S0048-9697(00)00511-8)
      Janssen PMP (2019) Antifouling. https://www.janssenpmp.com/business-areas/antifouling . Accessed 19 Nov 2019.
      Jennings AA, Li Z (2017) Worldwide regulatory guidance values applied to direct contact surface soil pesticide contamination: Part II—Noncarcinogenic Pesticides. Air, Soil Water Res. https://doi.org/10.1177/1178622117711931. (PMID: 10.1177/1178622117711931)
      JPMA (2018) List of registered organotin-free anti-fouling systems. In: Japan Paint Manufacturers Association. http://toryo.or.jp/eng/imo-e/ . Accessed 24 Oct 2018.
      Kegly SE, Hill BR, Orme S, Choi AH (2018) PAN pest control product search. In: PAN Pesticide Database, Pesticide Action Network, North America. http://www.pesticideinfo.org/Search_Products.jsp . Accessed 26 Oct 2018.
      Kempen T (2011) Efficacy, chemistry and environmental fate of tralopyril, a non-metal antifouling agent. Berlin, pp 1–16.
      Kim NS, Hong SH, An JG et al (2015) Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar Pollut Bull 95:484–490. https://doi.org/10.1016/j.marpolbul.2015.03.010. (PMID: 10.1016/j.marpolbul.2015.03.010)
      Kim NS, Shim WJ, Yim UH et al (2014) Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar Pollut Bull 78:201–208. https://doi.org/10.1016/j.marpolbul.2013.10.043. (PMID: 10.1016/j.marpolbul.2013.10.043)
      Lagerström M, Yngsell D, Eklund B, Ytreberg E (2019) Identification of commercial and recreational vessels coated with banned organotin paint through screening of tin by portable XRF. J Hazard Mater 362:107–114. https://doi.org/10.1016/j.jhazmat.2018.09.038. (PMID: 10.1016/j.jhazmat.2018.09.038)
      Lam NH, Jeong H, Kang S et al (2017) Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: contamination profiles and risk assessment. Mar Pollut Bull 121:302–312. https://doi.org/10.1016/j.marpolbul.2017.06.026. (PMID: 10.1016/j.marpolbul.2017.06.026)
      Maciel DC, Castro ÍB, de Souza JRB et al (2018) Assessment of organotins and imposex in two estuaries of the northeastern Brazilian coast. Mar Pollut Bull 126:473–478. https://doi.org/10.1016/j.marpolbul.2017.11.061. (PMID: 10.1016/j.marpolbul.2017.11.061)
      Mattos Y, Stotz WB, Romero MS et al (2017) Butyltin contamination in Northern Chilean coast: is there a potential risk for consumers? Sci Total Environ 595:209–217. https://doi.org/10.1016/j.scitotenv.2017.03.264. (PMID: 10.1016/j.scitotenv.2017.03.264)
      MCCAA (2018) Biocidal products. In: Malta Competition and Consumer Affairs Authority (MCCAA). https://mccaa.org.mt/Section/Content?contentId=1131 . Accessed 25 Oct 2018.
      Minchin D, Gollasch S (2002) Vectors — How exotics Get around. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Springer Netherlands, Dordrecht, pp 183–192.
      Mochida K, Fujii K (2009a) Toxicity in plankton and fish. In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of Antifouling Biocides. Springer Japan, Tokyo, pp 364–382.
      Mochida K, Fujii K (2009b) Further effects of alternative biocides on aquatic organisms. In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of Antifouling Biocides. Springer Japan, Tokyo, pp 383–393.
      Okamura H, Mieno H (2006) Present status of antifouling systems in Japan: tributyltin substitutes in Japan. In: Konstantinou IK (ed) Antifouling Paint Biocides. Springer, Berlin, Heidelberg, pp 201–212. (PMID: 10.1007/698_5_055)
      Oliveira IB, Schönenberger R, Barroso CM, Suter MJ-F (2016) LC-MS/MS determination of tralopyril in water samples. Chemosphere 145:445–449. https://doi.org/10.1016/j.chemosphere.2015.11.098. (PMID: 10.1016/j.chemosphere.2015.11.098)
      Oliveira IB, Groh KJ, Schönenberger R et al (2017) Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. Aquat Toxicol 191:164–174. https://doi.org/10.1016/j.aquatox.2017.07.019. (PMID: 10.1016/j.aquatox.2017.07.019)
      Omae I (2003) Organotin antifouling paints and their alternatives. Appl Organometal Chem 17:81–105. https://doi.org/10.1002/aoc.396. (PMID: 10.1002/aoc.396)
      Paz-Villarraga CA, Castro ÍB, Miloslavich P, Fillmann G (2015) Venezuelan Caribbean Sea under the threat of TBT. Chemosphere 119:704–710. https://doi.org/10.1016/j.chemosphere.2014.07.068. (PMID: 10.1016/j.chemosphere.2014.07.068)
      Pérez MC, Stupak ME, Blustein G et al (2009) 21 - Organic alternatives to copper in the control of marine biofouling. In: Hellio C, Yebra D (eds) Advances in Marine Antifouling Coatings and Technologies. Woodhead Publishing, pp 554–571. (PMID: 10.1533/9781845696313.3.554)
      Romanelli G, Berto D, Calace N et al (2018) Ballast water management system: assessment of chemical quality status of several ports in Adriatic Sea. Mar Pollut Bull 147. https://doi.org/10.1016/j.marpolbul.2017.12.030.
      Rong L, Lim LW, Takeuchi T (2005) Determination of iodide and thiocyanate in seawater by liquid chromatography with poly(ethylene glycol) stationary phase. Chromatographia 61:371–374. https://doi.org/10.1365/s10337-005-0501-3. (PMID: 10.1365/s10337-005-0501-3)
      Rotterdam Convention (2008) Annex III chemicals. Tributyltin compounds. In: Rotterdam Convention. http://www.pic.int/TheConvention/Chemicals/AnnexIIIChemicals/tabid/1132/language/en-US/Default.aspx . Accessed 27 Jun 2019.
      Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98. https://doi.org/10.1080/08927014.2010.542809. (PMID: 10.1080/08927014.2010.542809)
      Silkina A, Bazes A, Mouget J-L, Bourgougnon N (2012) Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species. Mar Pollut Bull 64:2039–2046. https://doi.org/10.1016/j.marpolbul.2012.06.028. (PMID: 10.1016/j.marpolbul.2012.06.028)
      Silva LIB, Justino CIL, Lopes I et al (2011) Optical fiber based methodology for assessment of thiocyanate in seawater. J Environ Monit 13:1811–1815. https://doi.org/10.1039/c1em10043b. (PMID: 10.1039/c1em10043b)
      Soon ZY, Jung J-H, Jang M et al (2019) Zinc pyrithione (ZnPT) as an antifouling biocide in the marine environment—a literature review of its toxicity, Environmental Fates, and Analytical Methods. Water Air Soil Pollut 230:310. https://doi.org/10.1007/s11270-019-4361-0. (PMID: 10.1007/s11270-019-4361-0)
      Soroldoni S, Castro ÍB, Abreu F et al (2018) Antifouling paint particles: sources, occurrence, composition and dynamics. Water Res 137:47–56. https://doi.org/10.1016/j.watres.2018.02.064. (PMID: 10.1016/j.watres.2018.02.064)
      Takahashi K (2009) Release rate of biocides from antifouling paints. In: Arai T, Harino H, Ohji M, Langston WJ (eds) Ecotoxicology of Antifouling Biocides. Springer Japan, Tokyo, pp 3–22.
      Telegdi J, Trif L, Románszki L (2016) 5 - Smart anti-biofouling composite coatings for naval applications. In: Montemor MF (ed) Smart Composite Coatings and Membranes. Woodhead Publishing, pp 123–155. (PMID: 10.1016/B978-1-78242-283-9.00005-1)
      Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26:73–88. https://doi.org/10.1080/08927010903216564. (PMID: 10.1080/08927010903216564)
      Turner A, Glegg G (2014) TBT-based antifouling paints remain on sale. Mar Pollut Bull 88:398–400. https://doi.org/10.1016/j.marpolbul.2014.08.041. (PMID: 10.1016/j.marpolbul.2014.08.041)
      Uc-Peraza RG, Castro ÍB, Fillmann G (2022) An absurd scenario in 2021: Banned TBT-based antifouling products still available on the market. Sci Total Environ 805:150377. https://doi.org/10.1016/j.scitotenv.2021.150377. (PMID: 10.1016/j.scitotenv.2021.150377)
      UNCTADstat (2018) Merchant fleet by country of beneficial ownership, annual, 2014 - 2018. In: UNCTADstat: United Nations Conference on Trade and Development. https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=80100 . Accessed 26 Jul 2019.
      UNCTADstat (2019) Liner shipping connectivity index, annual. In: UNCTADstat: United Nations Conference on Trade and Development. https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=92 . Accessed 17 Jun 2019.
      UNCTADstat (2021) Ships built by country of building, annual. In: UNCTADstat: United Nations Conference on Trade and Development. https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=89493 . Accessed 2 Oct 2021.
      van Wezel AP, van Vlaardingen P (2004) Environmental risk limits for antifouling substances. Aquat Toxicol 66:427–444. https://doi.org/10.1016/j.aquatox.2003.11.003. (PMID: 10.1016/j.aquatox.2003.11.003)
      Voulvoulis N (2006) Antifouling paint booster biocides: occurrence and partitioning in waterand sediments. In: Konstantinou IK (ed) Antifouling Paint Biocides. Springer, Berlin, Heidelberg, pp 155–170. (PMID: 10.1007/698_5_053)
      World Bank Group (2019) GDP (current US$) | Data. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD ? Accessed 17 Jun 2019.
      Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001. (PMID: 10.1016/j.porgcoat.2003.06.001)
    • Contributed Indexing:
      Keywords: Antifouling biocides; Antifouling paints; Currently used biocides; Formulations registered
    • Accession Number:
      0 (Disinfectants)
      0 (Water Pollutants, Chemical)
    • Publication Date:
      Date Created: 20220108 Date Completed: 20220413 Latest Revision: 20220531
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s11356-021-17662-5
    • Accession Number:
      34997484