Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Dual RNA-Seq of Trunk Kidneys Extracted From Channel Catfish Infected With Yersinia ruckeri Reveals Novel Insights Into Host-Pathogen Interactions.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Frontiers Research Foundation] Country of Publication: Switzerland NLM ID: 101560960 Publication Model: eCollection Cited Medium: Internet ISSN: 1664-3224 (Electronic) Linking ISSN: 16643224 NLM ISO Abbreviation: Front Immunol Subsets: MEDLINE
- Publication Information:
Original Publication: [Lausanne : Frontiers Research Foundation]
- Subject Terms:
- Abstract:
Host-pathogen intectarions are complex, involving large dynamic changes in gene expression through the process of infection. These interactions are essential for understanding anti-infective immunity as well as pathogenesis. In this study, the host-pathogen interaction was analyzed using a model of acute infection where channel catfish were infected with Yersinia ruckeri . The infected fish showed signs of body surface hyperemia as well as hyperemia and swelling in the trunk kidney. Double RNA sequencing was performed on trunk kidneys extracted from infected channel catfish and transcriptome data was compared with data from uninfected trunk kidneys. Results revealed that the host-pathogen interaction was dynamically regulated and that the host-pathogen transcriptome fluctuated during infection. More specifically, these data revealed that the expression levels of immune genes involved in Cytokine-cytokine receptor interactions, the NF-kappa B signaling pathway, the JAK-STAT signaling pathway, Toll-like receptor signaling and other immune-related pathways were significantly upregulated. Y. ruckeri mainly promote pathogenesis through the flagellum gene fli C in channel catfish. The weighted gene co-expression network analysis (WGCNA) R package was used to reveal that the infection of catfish is closely related to metabolic pathways. This study contributes to the understanding of the host-pathogen interaction between channel catfish and Y. ruckeri, more specifically how catfish respond to infection through a transcriptional perspective and how this infection leads to enteric red mouth disease (ERM) in these fish.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2021 Yang, Zhu, Zhang, Chen, Song and Ai.)
- Comments:
Erratum in: Front Immunol. 2022 Jul 27;13:982091. (PMID: 35967404)
- References:
PLoS One. 2011;6(12):e28516. (PMID: 22162774)
Curr Genet. 2020 Oct;66(5):971-988. (PMID: 32488337)
Nat Protoc. 2012 Mar 01;7(3):562-78. (PMID: 22383036)
J Appl Microbiol. 2017 Mar;122(3):578-588. (PMID: 27981729)
Sci Rep. 2016 Jul 04;6:29310. (PMID: 27373470)
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13257-63. (PMID: 25136111)
Semin Cell Dev Biol. 2015 Oct;46:91-103. (PMID: 26541483)
Fish Shellfish Immunol. 2017 Nov;70:106-120. (PMID: 28870856)
Environ Microbiol. 2020 Feb;22(2):677-693. (PMID: 31797531)
J Allergy Clin Immunol. 2016 Oct;138(4):984-1010. (PMID: 27577879)
J Biol Chem. 2013 May 24;288(21):14688-97. (PMID: 23572522)
Nat Rev Genet. 2010 Jan;11(1):9-16. (PMID: 19935729)
Nature. 2003 Nov 27;426(6965):378-9. (PMID: 14647352)
Genome Biol. 2016 Sep 27;17(1):198. (PMID: 27678244)
Front Immunol. 2018 Sep 13;9:2003. (PMID: 30271401)
J Bacteriol. 2011 Feb;193(4):944-51. (PMID: 21169490)
Appl Environ Microbiol. 2009 Feb;75(4):937-45. (PMID: 19088314)
Curr Microbiol. 2017 Jul;74(7):863-869. (PMID: 28444418)
Curr Protoc Immunol. 2015 Apr 01;109:14.12.1-14.12.10. (PMID: 25845562)
Nat Immunol. 2010 May;11(5):373-84. (PMID: 20404851)
Int J Mol Sci. 2016 Apr 14;17(4):557. (PMID: 27089334)
Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2897-912. (PMID: 20713392)
PLoS Negl Trop Dis. 2017 Mar 30;11(3):e0005357. (PMID: 28358880)
Nat Immunol. 2011 Jul 19;12(8):695-708. (PMID: 21772278)
Front Immunol. 2019 Jul 09;10:1565. (PMID: 31354721)
Fish Shellfish Immunol. 2020 Nov;106:441-450. (PMID: 32791094)
Fish Shellfish Immunol. 2012 Jul;33(1):146-53. (PMID: 22510211)
Fish Shellfish Immunol. 2020 Aug;103:357-365. (PMID: 32461169)
Front Cell Infect Microbiol. 2018 Oct 30;8:373. (PMID: 30460204)
Vet Microbiol. 2010 Aug 26;144(3-4):399-404. (PMID: 20202763)
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22322-22330. (PMID: 31611372)
Nat Rev Microbiol. 2005 Apr;3(4):281-94. (PMID: 15806094)
Genome Biol. 2010;11(10):R106. (PMID: 20979621)
BMC Genomics. 2021 Apr 22;22(1):292. (PMID: 33882827)
Fish Shellfish Immunol. 2014 Sep;40(1):99-108. (PMID: 24997435)
Annu Rev Immunol. 2014;32:609-34. (PMID: 24655299)
Appl Environ Microbiol. 2004 Sep;70(9):5199-207. (PMID: 15345400)
Fish Shellfish Immunol. 2012 Oct;33(4):1033-41. (PMID: 22796486)
Genome Announc. 2015 Jan 08;3(1):. (PMID: 25573927)
Zool Res. 2018 Nov 18;39(6):424-430. (PMID: 29955027)
Fish Shellfish Immunol. 2019 Nov;94:58-65. (PMID: 31470137)
Fish Shellfish Immunol. 2018 Oct;81:121-129. (PMID: 30006040)
Front Cell Infect Microbiol. 2018 Jun 26;8:218. (PMID: 29998086)
Virulence. 2014 Jul 1;5(5):619-24. (PMID: 24865652)
J Vet Diagn Invest. 2003 Nov;15(6):576-9. (PMID: 14667023)
Vet Microbiol. 2007 Nov 15;125(1-2):1-10. (PMID: 17651924)
Vet Res. 2015 Sep 24;46:103. (PMID: 26404907)
Dev Comp Immunol. 2011 Dec;35(12):1263-72. (PMID: 21414346)
Fish Shellfish Immunol. 2016 Nov;58:292-301. (PMID: 27577538)
J Fish Dis. 2010 Apr;33(4):331-40. (PMID: 20070462)
Fish Shellfish Immunol. 2020 Jun;101:19-50. (PMID: 32184191)
Zool Res. 2020 May 18;41(3):314-327. (PMID: 32242645)
Nat Commun. 2016 Jun 02;7:11757. (PMID: 27249958)
Arch Microbiol. 2010 Jul;192(7):541-7. (PMID: 20480360)
Fish Shellfish Immunol. 2019 Aug;91:333-342. (PMID: 31129189)
PLoS One. 2015 Feb 06;10(2):e0117263. (PMID: 25658600)
Environ Microbiol. 2020 Jul;22(7):2939-2955. (PMID: 32372498)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
BMC Bioinformatics. 2008 Dec 29;9:559. (PMID: 19114008)
Fish Shellfish Immunol. 2019 Aug;91:306-314. (PMID: 31121291)
Physiol Genomics. 2018 Aug 1;50(8):636-647. (PMID: 29799804)
Nature. 2016 Jan 28;529(7587):496-501. (PMID: 26789254)
Fish Shellfish Immunol. 2020 Apr;99:424-434. (PMID: 32087278)
Dev Comp Immunol. 2017 Aug;73:61-71. (PMID: 28235583)
Fish Shellfish Immunol. 2017 Jul;66:480-486. (PMID: 28532667)
Fish Shellfish Immunol. 2016 Sep;56:436-444. (PMID: 27506276)
Fish Shellfish Immunol. 2017 Jan;60:265-274. (PMID: 27890800)
Fish Shellfish Immunol. 2015 Nov;47(1):344-51. (PMID: 26370540)
Int Immunopharmacol. 2021 Feb;91:107272. (PMID: 33360370)
PLoS One. 2013;8(1):e53915. (PMID: 23342039)
Front Microbiol. 2018 May 25;9:1098. (PMID: 29887855)
Fish Shellfish Immunol. 2019 Apr;87:765-771. (PMID: 30776541)
Fish Shellfish Immunol. 2017 Nov;70:451-460. (PMID: 28916360)
Int J Mol Sci. 2015 Nov 25;16(12):28001-13. (PMID: 26602918)
BMC Vet Res. 2008 Aug 12;4:31. (PMID: 18700011)
- Contributed Indexing:
Keywords: Yersinia ruckeri; channel catfish; dual RNA-seq; host-pathogen interactions; immunity; virulence
- Publication Date:
Date Created: 20220103 Date Completed: 20220208 Latest Revision: 20231108
- Publication Date:
20240829
- Accession Number:
PMC8715527
- Accession Number:
10.3389/fimmu.2021.775708
- Accession Number:
34975864
No Comments.