Resonance from antiferromagnetic spin fluctuations for superconductivity in UTe 2 .

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Abstract:
      Superconductivity originates from the formation of bound (Cooper) pairs of electrons that can move through the lattice without resistance below the superconducting transition temperature T c (ref.  1 ). Electron Cooper pairs in most superconductors form anti-parallel spin singlets with total spin S = 0 (ref.  2 ), although they can also form parallel spin-triplet Cooper pairs with S = 1 and an odd parity wavefunction 3 . Spin-triplet pairing is important because it can host topological states and Majorana fermions relevant for quantum computation 4,5 . Because spin-triplet pairing is usually mediated by ferromagnetic (FM) spin fluctuations 3 , uranium-based materials near an FM instability are considered to be ideal candidates for realizing spin-triplet superconductivity 6 . Indeed, UTe 2 , which has a T c  ≈ 1.6 K (refs.  7,8 ), has been identified as a candidate for a chiral spin-triplet topological superconductor near an FM instability 7-14 , although it also has antiferromagnetic (AF) spin fluctuations 15,16 . Here we use inelastic neutron scattering (INS) to show that superconductivity in UTe 2 is coupled to a sharp magnetic excitation, termed resonance 17-23 , at the Brillouin zone boundary near AF order. Because the resonance has only been found in spin-singlet unconventional superconductors near an AF instability 17-23 , its observation in UTe 2 suggests that AF spin fluctuations may also induce spin-triplet pairing 24 or that electron pairing in UTe 2 has a spin-singlet component.
      (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957). (PMID: 10.1103/PhysRev.108.1175)
      Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012). (PMID: 10.1103/RevModPhys.84.1383)
      Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr 2 RuO 2 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003). (PMID: 10.1103/RevModPhys.75.657)
      Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017). (PMID: 2836783310.1088/1361-6633/aa6ac7)
      Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001). (PMID: 10.1070/1063-7869/44/10S/S29)
      Aoki, D., Ishida, K. & Flouquet, J. Review of U-based ferromagnetic superconductors: comparison between UGe 2 , URhGe, and UCoGe. J. Phys. Soc. Jpn. 88, 022001 (2019). (PMID: 10.7566/JPSJ.88.022001)
      Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019). (PMID: 3141696010.1126/science.aav8645)
      Aoki, D. et al. Unconventional superconductivity in heavy fermion UTe 2 . J. Phys. Soc. Jpn. 88, 043702 (2019). (PMID: 10.7566/JPSJ.88.043702)
      Ran, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250–1254 (2019). (PMID: 10.1038/s41567-019-0670-x)
      Knebel, G. et al. Field-reentrant superconductivity close to a metamagnetic transition in the heavy-fermion superconductor UTe 2 . J. Phys. Soc. Jpn. 88, 063707 (2019). (PMID: 10.7566/JPSJ.88.063707)
      Sundar, S. et al. Coexistence of ferromagnetic fluctuations and superconductivity in the actinide superconductor UTe 2 . Phys. Rev. B 100, 140502 (2019). (PMID: 10.1103/PhysRevB.100.140502)
      Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe 2 . Nature 579, 523–527 (2020). (PMID: 3221425410.1038/s41586-020-2122-2)
      Nakamine, G. et al. Anisotropic response of spin susceptibility in the superconducting state of UTe 2 probed with 125 Te–NMR measurement. Phys. Rev. B 103, L100503 (2021). (PMID: 10.1103/PhysRevB.103.L100503)
      Hayes, I. M. et al. Multicomponent superconducting order parameter in UTe 2 . Science 373, 797–801 (2021). (PMID: 3438539710.1126/science.abb0272)
      Thomas, S. M. et al. Evidence for a pressure-induced antiferromagnetic quantum critical point in intermediate-valence UTe 2 . Sci. Adv. 6, eabc8709 (2020). (PMID: 33055167755683110.1126/sciadv.abc8709)
      Duan, C. et al. Incommensurate spin fluctuations in the spin-triplet superconductor candidate UTe 2 . Phys. Rev. Lett. 125, 237003 (2020). (PMID: 3333717610.1103/PhysRevLett.125.237003)
      Rossat-Mignod, J. et al. Neutron scattering study of the YBa 2 Cu 3 O 6+x system. Physica C 185–189, 86–92 (1991). (PMID: 10.1016/0921-4534(91)91955-4)
      Wilson, S. D. et al. Resonance in the electron-doped high-transition-temperature superconductor Pr 0.88 LaCe 0.12 CuO 4−δ . Nature 442, 59–62 (2006). (PMID: 1682344810.1038/nature04857)
      Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015). (PMID: 10.1103/RevModPhys.87.855)
      Sato, N. K. et al. Strong coupling between local moments and superconducting ‘heavy’ electrons in UPd 2 Al 3 . Nature 410, 340–343 (2001). (PMID: 1126820310.1038/35066519)
      Bernhoeft, N. Superconductor order parameter symmetry in UPd 2 Al 3 . Eur. Phys. J. B 13, 685–694 (2000). (PMID: 10.1007/s100510050086)
      Stock, C., Broholm, C., Hudis, J., Kang, H. J. & Petrovic, C. Spin resonance in the d-wave superconductor CeCoIn 5 . Phys. Rev. Lett. 100, 087001 (2008). (PMID: 1835265610.1103/PhysRevLett.100.087001)
      Stockert, O. et al. Magnetically driven superconductivity in CeCu 2 Si 2 . Nat. Phys. 7, 119–124 (2011). (PMID: 10.1038/nphys1852)
      Kuwabara, T. & Ogata, M. Spin-triplet superconductivity due to antiferromagnetic spin-fluctuation in Sr 2 RuO 4 . Phys. Rev. Lett. 85, 4586–4589 (2000). (PMID: 1108260210.1103/PhysRevLett.85.4586)
      Eschrig, M. The effect of collective spin-1 excitations on electronic spectra in high-T c superconductors. Adv. Phys. 55, 47–183 (2006). (PMID: 10.1080/00018730600645636)
      Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873–875 (2009). (PMID: 10.1038/nphys1426)
      Huxley, A. D., Raymond, S. & Ressouche, E. Magnetic excitations in the ferromagentic superconductor UGe 2 . Phys. Rev. Lett. 91, 207201 (2003). (PMID: 1468338710.1103/PhysRevLett.91.207201)
      Stock, C. et al. Anisotropic critical magnetic fluctuations in the ferromagnetic superconductor UCoGe. Phys. Rev. Lett. 107, 187202 (2011). (PMID: 2210766810.1103/PhysRevLett.107.187202)
      Kunkemöller, S. et al. Absence of a large superconductivity-induced gap in magnetic fluctuations of Sr 2 RuO 4 . Phys. Rev. Lett. 118, 147002 (2017). (PMID: 2843048910.1103/PhysRevLett.118.147002)
      Steffens, P. et al. Spin fluctuations in Sr 2 RuO 4 from polarized neutron scattering: implications for superconductivity. Phys. Rev. Lett. 122, 047004 (2019). (PMID: 3076829310.1103/PhysRevLett.122.047004)
      Pustogow, A. et al. Constraints on the superconducting order parameter in Sr 2 RuO 4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72–75 (2019). (PMID: 3154865810.1038/s41586-019-1596-2)
      Joynt, R. & Taillefer, L. The superconducting phases of UPt 3 . Rev. Mod. Phys. 74, 235–294 (2002). (PMID: 10.1103/RevModPhys.74.235)
      Aeppli, G. et al. Magnetic order and fluctuations in superconducting UPt 3 . Phys. Rev. Lett. 60, 615–618 (1988). (PMID: 1003859810.1103/PhysRevLett.60.615)
      Gannon, W. J. et al. Spin susceptibility of the topological superconductor UPt 3 from polarized neutron diffraction. Phys. Rev. B 96, 041111(R) (2017). (PMID: 10.1103/PhysRevB.96.041111)
      Song, Y. et al. Nature of the spin resonance mode in CeCoIn 5 . Commun. Phys. 3, 98 (2020). (PMID: 10.1038/s42005-020-0365-8)
      Zwicknagl, G. & Fulde, P. The dual nature of 5f electrons and the origin of heavy fermions in U compounds. J. Phys. Condens. Matter 15, S1911–S1916 (2003). (PMID: 10.1088/0953-8984/15/28/302)
      Fujimori, S. et al. Core-level photoelectron spectroscopy study of UTe 2 . J. Phys. Soc. Jpn. 90, 015002 (2021). (PMID: 10.7566/JPSJ.90.015002)
      Ishizuka, J. & Yanase, Y. Periodic Anderson model for magnetism and superconductivity in UTe 2 . Phys. Rev. B 103, 094504 (2021). (PMID: 10.1103/PhysRevB.103.094504)
      Wang, M. et al. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides. Nat. Commun. 4, 2874 (2013). (PMID: 2430121910.1038/ncomms3874)
      Miao, L. et al. Low energy band structure and symmetries of UTe 2 from angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 124, 076401 (2020). (PMID: 3214232710.1103/PhysRevLett.124.076401)
      Kim, J. S., Tam, G. N. & Stewart, G. R. Universal scaling law for the condensation energy across a broad range of superconductor classes. Phys. Rev. B 92, 224509 (2015). (PMID: 10.1103/PhysRevB.92.224509)
      Ehlers, G., Podlesnyak, A. A., Niedziela, J. L., Iverson, E. B. & Sokol, P. E. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source: design and performance, Rev. Sci. Instrum. 82, 085108 (2011). (PMID: 2189527610.1063/1.3626935)
      Ewings, R. A. et al. HORACE: software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments. Nucl. Instrum. Meth. Phys. Res. A 834, 132–142 (2016). (PMID: 10.1016/j.nima.2016.07.036)
      Nica, E. N. & Si, Q. Multiorbital singlet pairing and d + d superconductivity. npj Quantum Mater. 6, 3 (2021). (PMID: 10.1038/s41535-020-00304-3)
      Nica, E. M., Yu, R. & Si, Q. Orbital-selective pairing and superconductivity in iron selenides. npj Quantum Mater. 2, 24 (2017). (PMID: 10.1038/s41535-017-0027-6)
      Pang, G. M. et al. Fully gapped d-wave superconductivity in CeCu 2 Si 2 . Proc. Natl Acad. Sci. USA 115, 5343–5347 (2018). (PMID: 29739886600352510.1073/pnas.1720291115)
      Amorese, A. et al. Possible multiorbital ground state in CeCu 2 Si 2 . Phys. Rev. B 102, 245146 (2020). (PMID: 10.1103/PhysRevB.102.245146)
      Shick, A. B. & Pickett, W. E. Spin–orbit coupling induced degeneracy in the anisotropic unconventional superconductor UTe 2 . Phys. Rev. B 100, 134502 (2019). (PMID: 10.1103/PhysRevB.100.134502)
      Shick, A. B., Fujimori, S. & Pickett, W. E. UTe 2 : a nearly insulating half-filled [Formula: see text] heavy-fermion metal. Phys. Rev. B 103, 125136 (2021). (PMID: 10.1103/PhysRevB.103.125136)
      Koster, G. F. et al. The Properties of the Thirty-Two Point Groups (MIT Press, 1963).
      Pixley, J. H., Deng, L., Ingersent, K. & Si, Q. Pairing correlations near a Kondo-destruction quantum critical point. Phys. Rev. B 91, 201109(R) (2015). (PMID: 10.1103/PhysRevB.91.201109)
      Nguyen, D. H. et al. Superconductivity in an extreme strange metal. Nat. Commun. 12, 4341 (2021). (PMID: 34290244829538710.1038/s41467-021-24670-z)
    • Publication Date:
      Date Created: 20211223 Date Completed: 20220419 Latest Revision: 20221027
    • Publication Date:
      20221213
    • Accession Number:
      10.1038/s41586-021-04151-5
    • Accession Number:
      34937893