YAP maintains the production of intermediate progenitor cells and upper-layer projection neurons in the mouse cerebral cortex.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 9201927 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0177 (Electronic) Linking ISSN: 10588388 NLM ISO Abbreviation: Dev Dyn Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, NY : Wiley, c1992-
    • Subject Terms:
    • Abstract:
      Background: The Hippo pathway is conserved through evolution and plays critical roles in development, tissue homeostasis and tumorigenesis. Yes-associated protein (YAP) is a transcriptional coactivator downstream of the Hippo pathway. Previous studies have demonstrated that activation of YAP promotes proliferation in the developing brain. Whether YAP is required for the production of neural progenitor cells or neurons in vivo remains unclear.
      Results: We demonstrated that SATB homeobox 2 (SATB2)-positive projection neurons (PNs) in upper layers, but not T-box brain transcription factor 1-positive and Coup-TF interacting protein 2-positive PNs in deep layers, were decreased in the neonatal cerebral cortex of Yap conditional knockout (cKO) mice driven by Nestin-Cre. Cell proliferation was reduced in the developing cerebral cortex of Yap-cKO. SATB2-positive PNs are largely generated from intermediate progenitor cells (IPCs), which are derived from radial glial cells (RGCs) during cortical development. Among these progenitor cells, IPCs but not RGCs were decreased in Yap-cKO. We further demonstrated that cell cycle re-entry was reduced in progenitor cells of Yap-cKO, suggesting that fewer IPCs were generated in Yap-cKO.
      Conclusion: YAP is required for the production of IPCs and upper-layer SATB2-positive PNs during development of the cerebral cortex in mice.
      (© 2021 American Association for Anatomy.)
    • References:
      Zheng Y, Pan D. The Hippo signaling pathway in development and disease. Dev Cell. 2019;50(3):264-282. doi:10.1016/j.devcel.2019.06.003.
      Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005;122(3):421-434. doi:10.1016/j.cell.2005.06.007.
      Ren F, Zhang L, Jiang J. Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol. 2010;337(2):303-312. doi:10.1016/j.ydbio.2009.10.046.
      Wu S, Liu Y, Zheng Y, Dong J, Pan D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell. 2008;14(3):388-398. doi:10.1016/j.devcel.2008.01.007.
      Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell. 2008;14(3):377-387. doi:10.1016/j.devcel.2008.01.006.
      Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1-17. doi:10.1101/gad.274027.115.
      Zhao B, Li L, Lu Q, et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011;25(1):51-63. doi:10.1101/gad.2000111.
      Liu X, Yang N, Figel SA, et al. PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene. 2013;32(10):1266-1273. doi:10.1038/onc.2012.147.
      Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 2014;141(8):1614-1626. doi:10.1242/dev.102376.
      Cao X, Pfaff SL, Gage FH. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 2008;22(23):3320-3334. doi:10.1101/gad.1726608.
      Fernandez LA, Northcott PA, Dalton J, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23(23):2729-2741. doi:10.1101/gad.1824509.
      Lin YT, Ding JY, Li MY, Yeh TS, Wang TW, Yu JY. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res. 2012;318(15):1877-1888. doi:10.1016/j.yexcr.2012.05.005.
      Kostic M, Paridaen J, Long KR, et al. YAP activity is necessary and sufficient for basal progenitor abundance and proliferation in the developing neocortex. Cell Rep. 2019;27(4):1103-1118e6. doi:10.1016/j.celrep.2019.03.091.
      Lavado A, Park JY, Pare J, et al. The Hippo pathway prevents YAP/TAZ-driven hypertranscription and controls neural progenitor number. Dev Cell. 2018;47(5):576-591e8. doi:10.1016/j.devcel.2018.09.021.
      Cappello S, Gray MJ, Badouel C, et al. Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nat Genet. 2013;45:1300-1308. doi:10.1038/ng.2765.
      Park R, Moon UY, Park JY, et al. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun. 2016;7:10329. doi:10.1038/ncomms10329.
      Huang Z, Hu J, Pan J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143(13):2398-2409. doi:10.1242/dev.130658.
      Ohtaka-Maruyama C, Okado H. Molecular pathways underlying projection neuron production and migration during cerebral cortical development. Front Neurosci. 2015;9:447. doi:10.3389/fnins.2015.00447.
      Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci. 2013;14:755-769. doi:10.1038/nrn3586.
      Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development. 2012;139(9):1535-1546. doi:10.1242/dev.069963.
      Leone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK. The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol. 2008;18(1):28-35. doi:10.1016/j.conb.2008.05.006.
      Englund C, Fink A, Lau C, et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci. 2005;25(1):247-251. doi:10.1523/JNEUROSCI.2899-04.2005.
      Kowalczyk T, Pontious A, Englund C, et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex. 2009;19:2439-2450. doi:10.1093/cercor/bhn260.
      Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004;7(2):136-144. doi:10.1038/nn1172.
      Vasistha NA, Garcia-Moreno F, Arora S, et al. Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex. 2015;25:3290-3302. doi:10.1093/cercor/bhu125.
      Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16(20):2699-2712. doi:10.1101/gad.1021202.
      Chen Q, Zhang N, Xie R, et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes Dev. 2015;29(12):1285-1297. doi:10.1101/gad.264234.115.
      Liang H, Hippenmeyer S, Ghashghaei HT. A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors. Biol Open. 2012;1(12):1200-1203. doi:10.1242/bio.20122287.
      Gao P, Postiglione MP, Krieger TG, et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. 2014;159(4):775-788. doi:10.1016/j.cell.2014.10.027.
      Mihalas AB, Hevner RF. Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors. Development. 2018;145(17):dev164335. doi:10.1242/dev.164335.
      Lavado A, Gangwar R, Pare J, Wan S, Fan Y, Cao X. YAP/TAZ maintain the proliferative capacity and structural organization of radial glial cells during brain development. Dev Biol. 2021;480:39-49. doi:10.1016/j.ydbio.2021.08.010.
      Mukhtar T, Breda J, Grison A, et al. Tead transcription factors differentially regulate cortical development. Sci Rep. 2020;10(1):4625. doi:10.1038/s41598-020-61490-5.
      Saito K, Kawasoe R, Sasaki H, Kawaguchi A, Miyata T. Neural progenitor cells undergoing Yap/Tead-mediated enhanced self-renewal form heterotopias more easily in the diencephalon than in the telencephalon. Neurochem Res. 2018;43(1):180-189. doi:10.1007/s11064-017-2390-x.
      Yao M, Wang Y, Zhang P, et al. BMP2-SMAD signaling represses the proliferation of embryonic neural stem cells through YAP. J Neurosci. 2014;34(36):12039-12048. doi:10.1523/JNEUROSCI.0486-14.2014.
      Alarcon C, Zaromytidou AI, Xi Q, et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009;139(4):757-769. doi:10.1016/j.cell.2009.09.035.
      Lian I, Kim J, Okazawa H, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24(11):1106-1118. doi:10.1101/gad.1903310.
      Liu WA, Chen S, Li Z, et al. PARD3 dysfunction in conjunction with dynamic HIPPO signaling drives cortical enlargement with massive heterotopia. Genes Dev. 2018;32(11-12):763-780. doi:10.1101/gad.313171.118.
      Najas S, Pijuan I, Esteve-Codina A, et al. A SMAD1/5-YAP signalling module drives radial glia self-amplification and growth of the developing cerebral cortex. Development. 2020;147(13):dev187005. doi:10.1242/dev.187005.
      Fernandes M, Gutin G, Alcorn H, McConnell SK, Hebert JM. Mutations in the BMP pathway in mice support the existence of two molecular classes of holoprosencephaly. Development. 2007;134(21):3789-3794. doi:10.1242/dev.004325.
      Caronia G, Wilcoxon J, Feldman P, Grove EA. Bone morphogenetic protein signaling in the developing telencephalon controls formation of the hippocampal dentate gyrus and modifies fear-related behavior. J Neurosci. 2010;30(18):6291-6301. doi:10.1523/JNEUROSCI.0550-10.2010.
      Wang L, Hou S, Han YG. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19(7):888-896. doi:10.1038/nn.4307.
      Zhang N, Bai H, David KK, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010;19(1):27-38. doi:10.1016/j.devcel.2010.06.015.
      Tronche F, Kellendonk C, Kretz O, et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet. 1999;23(1):99-103. doi:10.1038/12703.
    • Contributed Indexing:
      Keywords: Hippo pathway; YAP; cerebral cortex; intermediate progenitor cells; radial glial cells
    • Accession Number:
      0 (Cell Cycle Proteins)
      0 (Transcription Factors)
      0 (YAP-Signaling Proteins)
      0 (Yap1 protein, mouse)
    • Publication Date:
      Date Created: 20211221 Date Completed: 20220503 Latest Revision: 20220614
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/dvdy.448
    • Accession Number:
      34931379