Item request has been placed!
×
Item request cannot be made.
×
Processing Request
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Li L;Li L; Wang YT; Wang YT; Ji CM; Ji CM; Zheng CH; Zheng CH; Ni JC; Ni JC; Su YS; Su YS
- Source:
PLoS computational biology [PLoS Comput Biol] 2021 Dec 10; Vol. 17 (12), pp. e1009655. Date of Electronic Publication: 2021 Dec 10 (Print Publication: 2021).
- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
- Language:
English
- Additional Information
- Source:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
- Publication Information:
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
- Subject Terms:
- Abstract:
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease.
Competing Interests: The authors have declared that no competing interests exist.
- References:
Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73. (PMID: 24275495)
PLoS Comput Biol. 2019 Apr 1;15(4):e1006931. (PMID: 30933970)
Bioinformatics. 2020 Apr 15;36(8):2538-2546. (PMID: 31904845)
Cell. 2001 Dec 28;107(7):823-6. (PMID: 11779458)
PLoS Comput Biol. 2017 Mar 24;13(3):e1005455. (PMID: 28339468)
Oncotarget. 2016 Oct 4;7(40):65257-65269. (PMID: 27533456)
Front Cell Dev Biol. 2021 Feb 09;9:617569. (PMID: 33634120)
Brief Bioinform. 2021 Nov 5;22(6):. (PMID: 33963829)
BMC Bioinformatics. 2021 Apr 28;22(1):219. (PMID: 33910505)
Sci Rep. 2016 Feb 16;6:21106. (PMID: 26880032)
Front Genet. 2020 Apr 15;11:354. (PMID: 32351545)
Nucleic Acids Res. 2019 Jan 8;47(D1):D1013-D1017. (PMID: 30364956)
Sci Rep. 2020 Oct 21;10(1):17901. (PMID: 33087810)
Biol Rev Camb Philos Soc. 2016 May;91(2):409-28. (PMID: 25631495)
Cancer Res. 2005 Aug 15;65(16):7065-70. (PMID: 16103053)
Science. 2005 Nov 25;310(5752):1288-9. (PMID: 16311325)
Cells. 2019 Sep 06;8(9):. (PMID: 31489920)
Brief Bioinform. 2021 Jul 20;22(4):. (PMID: 34293850)
J Transl Med. 2018 Dec 11;16(1):348. (PMID: 30537965)
Bioinformatics. 2013 Oct 15;29(20):2617-24. (PMID: 24002109)
BMC Genomics. 2009 Aug 28;10:407. (PMID: 19715577)
Trends Genet. 2004 Dec;20(12):617-24. (PMID: 15522457)
Curr Opin Genet Dev. 2005 Oct;15(5):563-8. (PMID: 16099643)
Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104. (PMID: 18927107)
Cell. 1993 Dec 3;75(5):843-54. (PMID: 8252621)
BMC Bioinformatics. 2013;14 Suppl 12:S1. (PMID: 24267745)
Cell Cycle. 2008 Mar 15;7(6):759-64. (PMID: 18344688)
Cell. 1993 Dec 3;75(5):855-62. (PMID: 8252622)
Cells. 2019 Aug 26;8(9):. (PMID: 31455028)
BMC Med Inform Decis Mak. 2021 Apr 20;21(Suppl 1):133. (PMID: 33882934)
BMC Syst Biol. 2010 May 28;4 Suppl 1:S2. (PMID: 20522252)
J Mol Biol. 1970 Mar;48(3):443-53. (PMID: 5420325)
Herz. 2012 Sep;37(6):637-43. (PMID: 22872003)
Brief Bioinform. 2021 Jul 20;22(4):. (PMID: 33078832)
Bioinformatics. 2021 Apr 9;37(1):66-72. (PMID: 32726399)
Nucleic Acids Res. 2005 Mar 01;33(4):1290-7. (PMID: 15741182)
Silence. 2010 Feb 02;1(1):6. (PMID: 20226080)
KDD. 2016 Aug;2016:855-864. (PMID: 27853626)
Nature. 2004 Sep 16;431(7006):350-5. (PMID: 15372042)
Bioinformatics. 2018 Sep 15;34(18):3178-3186. (PMID: 29701758)
Nucleic Acids Res. 2017 Jan 4;45(D1):D812-D818. (PMID: 27899556)
PLoS One. 2008;3(10):e3420. (PMID: 18923704)
Mol Genet Genomics. 2020 Sep;295(5):1197-1209. (PMID: 32500265)
Bioinformatics. 2010 Jul 1;26(13):1644-50. (PMID: 20439255)
Bioinformatics. 2014 Apr 15;30(8):1112-1119. (PMID: 24389653)
Cell. 2004 Jan 23;116(2):281-97. (PMID: 14744438)
JAMA. 1994 Apr 13;271(14):1103-8. (PMID: 8151853)
Nature. 2004 Sep 16;431(7006):343-9. (PMID: 15372041)
N Engl J Med. 2009 Sep 3;361(10):1018-20. (PMID: 19692681)
- Accession Number:
0 (MicroRNAs)
- Publication Date:
Date Created: 20211210 Date Completed: 20220211 Latest Revision: 20220211
- Publication Date:
20231215
- Accession Number:
PMC8694430
- Accession Number:
10.1371/journal.pcbi.1009655
- Accession Number:
34890410
No Comments.