Bacterial and Archaeal Community Distribution in Oilfield Water Re-injection Facilities and the Influences from Microorganisms in Injected Water.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: United States NLM ID: 7500663 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-184X (Electronic) Linking ISSN: 00953628 NLM ISO Abbreviation: Microb Ecol Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Water flooding is widely employed for oil production worldwide. However, there has never been a systematic investigation of the microbial communities occurring in oilfield water re-injection facilities. Here, we investigated the distribution of bacterial and archaeal communities in water re-injection facilities of an oilfield, and illustrated the combined influences of environmental variation and the microorganisms in injected water on the microbial communities. Bacterial communities from the surface injection facilities were dominated by aerobic or facultative anaerobic Betaproteobacteria, Alphaproteobacteria, and Flavobacteria, whereas Clostridia, Deltaproteobacteria, Anaerolineae, and Synergistia predominated in downhole of the injection wells, and Gammaproteobacteria, Betaproteobacteria, and Epsilonproteobacteria predominated in the production wells. Methanosaeta, Methanobacterium, and Methanolinea were dominant archaea in the injection facilities, while Methanosaeta, Methanomethylovorans, and Methanoculleus predominated in the production wells. This study also demonstrated that the microorganisms in injected water could be easily transferred from injection station to wellheads and downhole of injection wells, and environmental variation and diffusion-limited microbial transfer resulted from formation filtration were the main factors determining microbial community assembly in oil-bearing strata. The results provide novel information on the bacterial and archaeal communities and the underlying mechanisms occurring in oilfield water re-injection facilities, and benefit the development of effective microbiologically enhanced oil recovery and microbiologically prevented reservoir souring programs.
      (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Pannekens M, Kroll L, Müller H, Mbow FT, Meckenstock RU (2019) Oil reservoirs, an exceptional habitat for microorganisms. New Biotechnol 49:1–9. https://doi.org/10.1016/j.nbt.2018.11.006. (PMID: 10.1016/j.nbt.2018.11.006)
      Voordouw G (2011) Production-related petroleum microbiology: progress and prospects. Curr Opin Biotechnol 22:401–405. https://doi.org/10.1016/j.copbio.2010.12.005. (PMID: 10.1016/j.copbio.2010.12.005)
      Li GQ, Gao PK, Wu YQ, Tian HM, Dai XC, Wang YS, Cui QS, Zhang HZ, Pan XX, Dong HP, Ma T (2014) Microbial abundance and community composition influence production performance in a low-temperature petroleum reservoir. Environ Sci Technol 48:5336–5344. https://doi.org/10.1021/es500239w. (PMID: 10.1021/es500239w)
      Zhao F, Li P, Guo C, Shi RJ, Zhang Y (2018) Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection. Bioresource Technol 251:295–302. https://doi.org/10.1016/j.biortech.2017.12.057. (PMID: 10.1016/j.biortech.2017.12.057)
      Song WF, Wang JW, Yan YC, An LY, Zhang F, Wang L, Xu Y, Tian MZ, Nie Y, Wu XL (2018) Shifts of the indigenous microbial communities from reservoir production water in crude oil- and asphaltene-degrading microcosms. Int Biodeter Biodegr 132:18–29. https://doi.org/10.1016/j.ibiod.2018.04.015. (PMID: 10.1016/j.ibiod.2018.04.015)
      Su SB, Dong H, Chai LJ, Zhang XT, Banat Ibrahim M, Wang ZL, Hou DJ, Zhang F, She YH (2018) Dynamics of a microbial community during an effective boost MEOR trial using high-throughput sequencing. Rsc Adv 8:690–697. https://doi.org/10.1039/C7RA12245D. (PMID: 10.1039/C7RA12245D)
      Gao PK, Li GQ, Le JJ, Liu XB, Liu F, Ma T (2018) Succession of microbial communities and changes of incremental oil in a post-polymer flooded reservoir with nutrient stimulation. Appl Microbiol Biot 102:2007–2017. https://doi.org/10.1007/s00253-018-8766-2. (PMID: 10.1007/s00253-018-8766-2)
      Le JJ, Liu F, Zhang JY, Bai LL, Wang R, Liu XB, Hou ZW, Lin WX (2014) A field test of activation indigenous microorganism for microbial enhanced oil recovery in reservoir after polymer flooding. Acta Petrolei Sinica 35:99–106. https://doi.org/10.7623/syxb201401011. (PMID: 10.7623/syxb201401011)
      Zhang F, She Y, Banat IM, Chai L, Yi S, Yu G, Hou D (2014) Potential microorganisms for prevention of paraffin precipitation in a hypersaline oil reservoir. Energ Fuel 28:1191–1197. https://doi.org/10.1021/ef402329u. (PMID: 10.1021/ef402329u)
      Carlson HK, Hubert CRJ (2019) Mechanisms and monitoring of oil reservoir souring control by nitrate or perchlorate injection. In: TJ MG (ed) Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Springer International Publishing, Cham, pp 1–25.
      Li XX, Yang T, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ (2017) Responses of microbial community composition to temperature gradient and carbon steel corrosion in production water of petroleum reservoir. Front Microbiol 8:02379. https://doi.org/10.3389/fmicb.2017.02379. (PMID: 10.3389/fmicb.2017.02379)
      Guan J, Xia LP, Wang LY, Liu JF, Gu JD, Mu BZ (2013) Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. Int Biodeter Biodegr 76:58–66. https://doi.org/10.1016/j.ibiod.2012.06.021. (PMID: 10.1016/j.ibiod.2012.06.021)
      Okoro C, Ekun OA, Nwume MI, Lin J (2016) Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis. Corros Sci 103:242–254. https://doi.org/10.1016/j.corsci.2015.11.024. (PMID: 10.1016/j.corsci.2015.11.024)
      Kryachko Y (2018) Novel approaches to microbial enhancement of oil recovery. J Biotechnol 266:118–123. https://doi.org/10.1016/j.jbiotec.2017.12.019. (PMID: 10.1016/j.jbiotec.2017.12.019)
      Vigneron A, Alsop EB, Lomans BP, Kyrpides NC, Head IM, Tsesmetzis N (2017) Succession in the petroleum reservoir microbiome through an oil field production lifecycle. ISME J 11:2141. https://doi.org/10.1038/ismej.2017.78. (PMID: 10.1038/ismej.2017.78)
      Wang XT, Li XZ, Yu L, Huang LX, Xiu JL, Lin W, Zhang YM (2019) Characterizing the microbiome in petroleum reservoir flooded by different water sources. Sci Total Environ 653:872–885. https://doi.org/10.1016/j.scitotenv.2018.10.410. (PMID: 10.1016/j.scitotenv.2018.10.410)
      Ren HY, Xiong SZ, Gao GJ, Song YT, Cao GZ, Zhao LP, Zhang XJ (2015) Bacteria in the injection water differently impacts the bacterial communities of production wells in high-temperature petroleum reservoirs. Front Microbiol 6:505. https://doi.org/10.3389/fmicb.2015.00505. (PMID: 10.3389/fmicb.2015.00505)
      Piceno YM, Reid FC, Tom LM, Conrad ME, Bill M, Hubbard CG, Fouke BW, Graff CJ, Han J, Stringfellow WT et al (2014) Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs. Front Microbiol 5:409. https://doi.org/10.3389/fmicb.2014.00409. (PMID: 10.3389/fmicb.2014.00409)
      Kim DD, O’Farrell C, Toth CRA, Montoya O, Gieg LM, Kwon TH, Yoon S (2018) Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs. Microb Biotechnol 11:788–796. https://doi.org/10.1111/1751-7915.13281. (PMID: 10.1111/1751-7915.13281)
      Zhou L, Lu YW, Wang DW, Zhang SL, Tang EG, Qi ZZ, Xie SN, Wu J, Liang B, Liu JF et al (2020) Microbial community composition and diversity in production water of a high-temperature offshore oil reservoir assessed by DNA- and RNA-based analyses. Int Biodeter Biodegr 151:104970. https://doi.org/10.1016/j.ibiod.2020.104970. (PMID: 10.1016/j.ibiod.2020.104970)
      Song ZY, Zhi Y, Zhao FM, Sun GZ, Zhu WY (2017) Wellhead samples of high-temperature, low-permeability petroleum reservoirs reveal the microbial communities in wellbores. Energ Fuel 31. https://doi.org/10.1021/acs.energyfuels.7b00152.
      Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Meth 10:996–998. https://doi.org/10.1038/nmeth.2604. (PMID: 10.1038/nmeth.2604)
      Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/aem.00062-07. (PMID: 10.1128/aem.00062-07)
      Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics (Oxford, England) 31:2882–2884. https://doi.org/10.1093/bioinformatics/btv287. (PMID: 10.1093/bioinformatics/btv287)
      Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494. (PMID: 10.1093/bioinformatics/btu494)
      Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ (2012) Molecular ecological network analyses. BMC Bioinformatics 13:113. https://doi.org/10.1186/1471-2105-13-113. (PMID: 10.1186/1471-2105-13-113)
      Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303. (PMID: 10.1101/gr.1239303)
      Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA (2019) Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J 13:1722–1736. https://doi.org/10.1038/s41396-019-0383-2. (PMID: 10.1038/s41396-019-0383-2)
      Wei G, Li M, Shi W, Tian R, Chang C, Wang Z, Wang N, Zhao G, Gao Z (2020) Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biol Biochem 144:107759. https://doi.org/10.1016/j.soilbio.2020.107759. (PMID: 10.1016/j.soilbio.2020.107759)
      Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219. https://doi.org/10.3389/fmicb.2014.00219. (PMID: 10.3389/fmicb.2014.00219)
      Albuquerque L, Tiago I, Veríssimo A, da Costa MS (2006) Tepidimonas thermarum sp. nov., a new slightly thermophilic betaproteobacterium isolated from the Elisenquelle in Aachen and emended description of the genus Tepidimonas. Syst Appl Microbiol 29:450–456. https://doi.org/10.1016/j.syapm.2005.12.004. (PMID: 10.1016/j.syapm.2005.12.004)
      Kampfer P (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341. https://doi.org/10.1099/ijs.0.03041-0. (PMID: 10.1099/ijs.0.03041-0)
      Aizawa SI (2014) Chapter 21 - Rhodobacter sphaeroides - a resourceful little bug. In The Flagellar World. Edited by Aizawa S-I. Academic Press 66-68.
      Fida TT, Gassara F, Voordouw G (2017) Biodegradation of isopropanol and acetone under denitrifying conditions by Thauera sp. TK001 for nitrate-mediated microbially enhanced oil recovery. J Hazard Mater 334:68–75. https://doi.org/10.1016/j.jhazmat.2017.03.061. (PMID: 10.1016/j.jhazmat.2017.03.061)
      Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 47:545–556. https://doi.org/10.1099/00207713-49-2-545. (PMID: 10.1099/00207713-49-2-545)
      Du C, Webb C (2011) 2.03 - cellular systems. In Comprehensive Biotechnology (Second Edition). Edited by Moo-Young M. Burlington. Academic Press 11-23.
      Zhang F, Qian DK, Wang XB, Dai K, Wang T, Zhang W, Zeng RJ (2020) Stimulation of methane production from benzoate with addition of carbon materials. Sci Total Environ 723:138080. https://doi.org/10.1016/j.scitotenv.2020.138080. (PMID: 10.1016/j.scitotenv.2020.138080)
      Gao PK, Tian HM, Li GQ, Sun HW, Ma T (2015) Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir. MicrobiologyOpen 4:332–342. https://doi.org/10.1002/mbo3.241. (PMID: 10.1002/mbo3.241)
      Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Micr 56:1539–1545. https://doi.org/10.1099/ijs.0.63894-0. (PMID: 10.1099/ijs.0.63894-0)
      Dong H, Xia W, Dong H, She Y, Zhu P, Liang K, Zhang Z, Liang C, Song Z, Sun S, Zhang G (2016) Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery. Front Microbiol:7. https://doi.org/10.3389/fmicb.2016.01710.
      Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141-251. 10.1016/S0065-2164(08)00806-X.
      Gao PK, Tian HM, Wang YS, Li YS, Li Y, Xie JX, Zeng B, Zhou JF, Li GQ, Ma T (2016) Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China. Sci Rep-Uk 6:20174. https://doi.org/10.1038/srep20174. (PMID: 10.1038/srep20174)
      Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP, Wu XL (2012) Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. Plos One 7:e33535 https://10.1371/journal.pone.0033535. (PMID: 10.1371/journal.pone.0033535)
      Wang LY, Duan RY, Liu JF, Yang SZ, Gu JD, Mu BZ (2012) Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences 9:5177–5203. 10.5194/bgd-9-5177-2012.
      Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences 1125:171–189. https://doi.org/10.1196/annals.1419.019. (PMID: 10.1196/annals.1419.019)
      Jetten M, Stams A, Zehnder A (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. Fems Microbiol Lett 88:181–197. https://doi.org/10.1016/0378-1097(92)90802-U. (PMID: 10.1016/0378-1097(92)90802-U)
      Davydova-Charakhch’yan IA, Kuznetsova VG, Mityushina LL, Belyaev SS (1992) Methane-forming bacilli from oil-fields of Tataria and western Siberia. Microbiology (Russ Acad Sci):299–305.
      Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microb 66:700–711. https://doi.org/10.1128/AEM.66.2.700-711.2000. (PMID: 10.1128/AEM.66.2.700-711.2000)
      Zhao JY, Hu B, Dolfing J, Li Y, Tang YQ, Jiang Y, Chi C, Xing JM, Nie Y, Wu XL (2021) Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs. Sci Total Environ 781:146506. https://doi.org/10.1016/j.scitotenv.2021.146506. (PMID: 10.1016/j.scitotenv.2021.146506)
      Lomans, Bart, P., Maas, Ronald (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65:3641-3650. doi: https://doi.org/10.1089/oli.1.1999.9.359.
      Nazina TN, Shestakova NM, Semenova EM, Korshunova AV, Kostrukova NK, Tourova TP, Min L, Feng Q, Poltaraus AB (2017) Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir. Front Microbiol:8. https://doi.org/10.3389/fmicb.2017.00707.
      Wadhams, George, H., Armitage, Judith, P. (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Bio:1024–1037. doi: https://doi.org/10.1038/nrm1524.
      van Wolferen M, Orell A, Albers S-V (2018) Archaeal biofilm formation. Nat Rev Microbiol 16:699–713. https://doi.org/10.1038/s41579-018-0058-4. (PMID: 10.1038/s41579-018-0058-4)
      Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiology and molecular biology reviews: MMBR 68:301–319. https://doi.org/10.1128/mmbr.68.2.301-319.2004. (PMID: 10.1128/mmbr.68.2.301-319.2004)
      Jiang M, Shao W, Perego M, Hoch JA (2000) Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38:535–542. https://doi.org/10.1046/j.1365-2958.2000.02148.x. (PMID: 10.1046/j.1365-2958.2000.02148.x)
      Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403. https://doi.org/10.1016/j.peptides.2003.11.026. (PMID: 10.1016/j.peptides.2003.11.026)
      Diego RG, Paola FS, Keilor RJ, Danilo PP, Roberto A, Randall A, Carolina CR, Max C (2021) Methylotrophs and hydrocarbon-degrading bacteria are key players in the microbial community of an abandoned century-old oil exploration well. Microb Ecol. https://doi.org/10.1007/s00248-021-01748-1.
      Xiao M, Sun SS, Zhang ZZ, Wang JM, Qiu LW, Sun HY, Song ZZ, Zhang BY, Gao DL, Zhang GQ, Wu WM (2016) Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities. Sci Rep-Uk 6:19600. https://doi.org/10.1038/srep19600. (PMID: 10.1038/srep19600)
      Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173. https://doi.org/10.3389/fmicb.2014.00173. (PMID: 10.3389/fmicb.2014.00173)
      Auguet JC, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190. https://doi.org/10.1038/ismej.2009.109. (PMID: 10.1038/ismej.2009.109)
      Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresource Technol 245:1258–1265. https://doi.org/10.1016/j.biortech.2017.08.028. (PMID: 10.1016/j.biortech.2017.08.028)
      Gao PK, Li Y, Tan LJ, Guo FF, Ma T (2019) Composition of bacterial and archaeal communities in an alkali-surfactant-polyacrylamide-flooded oil reservoir and the responses of microcosms to nutrients. Front Microbiol:10. https://doi.org/10.3389/fmicb.2019.02197.
      Jiménez N, Richnow HH, Vogt C, Treude T, Krüger M (2016) Methanogenic hydrocarbon degradation: evidence from field and laboratory studies. J Mol Microb Biotech 26:227.
      Voordouw G, Grigoryan AA, Lambo A, Lin S, Park HS, Jack TR, Coombe D, Clay B, Zhang F, Ertmoed R (2009) Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ Sci Technol 43:9512–9518. (PMID: 10.1021/es902211j)
      Gao PK, Li GQ, Tian HM, Wang YS, Sun HW, Ma T (2015) Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs. Biogeosciences 12:3403–3414. https://doi.org/10.5194/bg-12-3403-2015. (PMID: 10.5194/bg-12-3403-2015)
      Li Y, Li Y, Ma T, Gao PK (2020) Chromosomal integration of red fluorescent protein gene in rhamnolipids-producer Pseudomonas aeruginosa SG and its application in petroleum reservoir. Microbiology China 47:3141–3150. https://doi.org/10.13344/j.microbiol.china.200556. (PMID: 10.13344/j.microbiol.china.200556)
    • Contributed Indexing:
      Keywords: Microbial community; Microbial transfer; Microbial-enhanced oil recovery; Petroleum reservoir; Water re-injection facilities
    • Accession Number:
      059QF0KO0R (Water)
      0 (RNA, Ribosomal, 16S)
      0 (Petroleum)
    • Publication Date:
      Date Created: 20211130 Date Completed: 20221215 Latest Revision: 20221221
    • Publication Date:
      20240829
    • Accession Number:
      10.1007/s00248-021-01933-2
    • Accession Number:
      34845558