Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 101301086 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-7370 (Electronic) Linking ISSN: 17517362 NLM ISO Abbreviation: ISME J Subsets: MEDLINE
    • Publication Information:
      Publication: 2024- : Oxford : Oxford University Press
      Original Publication: London : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Interactions between Sphagnum (peat moss) and cyanobacteria play critical roles in terrestrial carbon and nitrogen cycling processes. Knowledge of the metabolites exchanged, the physiological processes involved, and the environmental conditions allowing the formation of symbiosis is important for a better understanding of the mechanisms underlying these interactions. In this study, we used a cross-feeding approach with spatially resolved metabolite profiling and metatranscriptomics to characterize the symbiosis between Sphagnum and Nostoc cyanobacteria. A pH gradient study revealed that the Sphagnum-Nostoc symbiosis was driven by pH, with mutualism occurring only at low pH. Metabolic cross-feeding studies along with spatially resolved matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) identified trehalose as the main carbohydrate source released by Sphagnum, which were depleted by Nostoc along with sulfur-containing choline-O-sulfate, taurine and sulfoacetate. In exchange, Nostoc increased exudation of purines and amino acids. Metatranscriptome analysis indicated that Sphagnum host defense was downregulated when in direct contact with the Nostoc symbiont, but not as a result of chemical contact alone. The observations in this study elucidated environmental, metabolic, and physiological underpinnings of the widespread plant-cyanobacterial symbioses with important implications for predicting carbon and nitrogen cycling in peatland ecosystems as well as the basis of general host-microbe interactions.
      (© 2021. UT-Battelle, LLC.)
    • References:
      Limpricht KG. Die laubmoose. In: Rabenhorst L (ed). Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, Zweite Auflage. 1890. Kummer, Leipzig.
      Basilier K. Fixation and uptake of nitrogen in Sphagnum blue-green algal associations. Oikos. 1980;34:239. (PMID: 10.2307/3544188)
      Granhall U, Selander H. Nitrogen fixation in a subarctic mire. Oikos. 1973;24:8. (PMID: 10.2307/3543247)
      Basilier K, Granhall U, Stenström T-A. Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos. 1978;31:236. (PMID: 10.2307/3543568)
      Basilier K. Moss-associated nitrogen fixation in some mire and coniferous forest environments around Uppsala, Sweden. Lindbergia. 1979;5:84–88.
      Meeks JC. Physiological adaptations in nitrogen-fixing Nostoc–plant symbiotic associations. In: Pawlowski K (ed). Prokaryotic symbionts in plants. 2007. Springer, Berlin, Heidelberg, pp 181–205.
      Adams DG. Cyanobacteria in symbiosis with hornworts and liverworts. Cyanobacteria in symbiosis. 2002. Springer, Dordrecht, pp 117-35.
      Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66:94–121. (PMID: 1187512912077910.1128/MMBR.66.1.94-121.2002)
      Kostka JE, Weston DJ, Glass JB, Lilleskov EA, Shaw AJ, Turetsky MR. The Sphagnum microbiome: new insights from an ancient plant lineage. N Phytol. 2016;211:57–64. (PMID: 10.1111/nph.13993)
      Granhall U, Hofsten AV. Nitrogenase activity in relation to intracellular organisms in Sphagnum mosses. Physiol Plant. 1976;36:88–94. (PMID: 10.1111/j.1399-3054.1976.tb05033.x)
      van den Elzen E, Kox MAR, Harpenslager SF, Hensgens G, Fritz C, Jetten MSM, et al. Symbiosis revisited: phosphorus and acid buffering stimulate N 2 fixation but not Sphagnum growth. Biogeosciences. 2017;14:1111–22. (PMID: 10.5194/bg-14-1111-2017)
      Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the last glacial maximum. Geophys Res Lett. 2010;37:1–5. (PMID: 10.1029/2010GL043584)
      Lindo Z, Nilsson MC, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Glob Chang Biol. 2013;19:2022–35. (PMID: 2350514210.1111/gcb.12175)
      Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ, Kostka JE, et al. Experimental warming alters the community composition, diversity, and N 2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Glob Chang Biol. 2019;25:2993–3004. (PMID: 31148286685228810.1111/gcb.14715)
      Rai AN, Söderbäck E, Bergman B. Tansley Review No. 116. N Phytol. 2000;147:449–81. (PMID: 10.1046/j.1469-8137.2000.00720.x)
      Adams DG, Duggan PS. Cyanobacteria-bryophyte symbioses. J Exp Bot. 2008;59:1047–58. (PMID: 1826793910.1093/jxb/ern005)
      Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. N Phytol. 2013;200:54–60. (PMID: 10.1111/nph.12403)
      Warshan D, Espinoza JL, Stuart RK, Richter RA, Kim S-Y, Shapiro N, et al. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis. ISME J. 2017;12:1–13.
      Stuart RK, Pederson ERA, Weyman PD, Weber PK, Rassmussen U, Dupont CL. Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. ISME J. 2020;14:3068–78. (PMID: 32814866778491210.1038/s41396-020-00738-4)
      Veličković D, Chu RK, Carrell AA, Thomas M, Paša-Tolić L, Weston DJ, et al. Multimodal MSI in conjunction with broad coverage spatially resolved MS2 increases confidence in both molecular identification and localization. Anal Chem. 2018;90:702–7. (PMID: 2921056610.1021/acs.analchem.7b04319)
      Nagy G, Veličković D, Chu RK, Carrell AA, Weston DJ, Ibrahim YM, et al. Towards resolving the spatial metabolome with unambiguous molecular annotations in complex biological systems by coupling mass spectrometry imaging with structures for lossless ion manipulations. Chem Commun. 2019;55:306–9. (PMID: 10.1039/C8CC07482H)
      Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N, Woyke T, et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol. 2018;35:1160–75. (PMID: 29554291591367910.1093/molbev/msy029)
      Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1–61.
      Hanson PJ, Riggs JS, Robert Nettles W, Phillips JR, Krassovski MB, Hook LA, et al. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO 2 atmosphere. Biogeosciences. 2017;14:861–83. (PMID: 10.5194/bg-14-861-2017)
      Frank W, Decker EL, Reski R. Molecular tools to study Physcomitrella patens. Plant Biol. 2005;7:220–7. (PMID: 1591244110.1055/s-2005-865645)
      Yao Y, Sun T, Wang T, Ruebel O, Northen T, Bowen BP. Analysis of metabolomics datasets with high-performance computing and metabolite atlases. Metabolites. 2015;5:431–2. (PMID: 26287255458880410.3390/metabo5030431)
      Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–21. (PMID: 24039616377250510.1007/s11306-007-0082-2)
      Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. (PMID: 2526070010.1093/bioinformatics/btu638)
      Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. (PMID: 22506599334251910.1089/cmb.2012.0021)
      Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5. (PMID: 23422339362480610.1093/bioinformatics/btt086)
      Seemann T. Genome analysis Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. (PMID: 2464206310.1093/bioinformatics/btu153)
      Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. (PMID: 21593126312577310.1093/nar/gkr367)
      Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, et al. MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant. 2019;12:879–92. (PMID: 3063931410.1016/j.molp.2019.01.003)
      Black K, Osborne B. An assessment of photosynthetic downregulation in cyanobacteria from the Gunnera-Nostoc symbiosis. N Phytol. 2004;162:125–32. (PMID: 10.1111/j.1469-8137.2004.01008.x)
      Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Ann Bot. 2013;111:743–67. (PMID: 23478942363133210.1093/aob/mct048)
      Clymo RS. The growth of Sphagnum: some effects of environment. Br Ecol Soc. 1973;61:849–69.
      Lamers LPM, Farhoush C, Van Groenendael JM, Roelofs JGM. Calcareous groundwater raises bogs; the concept of ombrotrophy revisited. J Ecol. 1999;87:639–48. (PMID: 10.1046/j.1365-2745.1999.00380.x)
      Nayak S, Prasanna R. Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res. 2007;5:103–13. (PMID: 10.15666/aeer/0502_103113)
      Jassey VEJ, Meyer C, Dupuy C, Bernard N, Mitchell EAD, Toussaint ML, et al. To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a Sphagnum peatland? Micro Ecol. 2013;66:571–80. (PMID: 10.1007/s00248-013-0262-8)
      Meeks JC. Symbiosis between nitrogen- fixing cyanobacteria and plants. Symbiosis. 1998;48:266–76.
      Pate S, Lindblad P, Atkins A. Planta in coralloid roots of cycad-Nostoc symbioses. Planta. 1988;176:461–71. (PMID: 2422094210.1007/BF00397652)
      Xie B, Chen DS, Zhou K, Xie YQ, Li YG, Hu GY, et al. Symbiotic abilities of Sinorhizobium fredii with modified expression of purL. Appl Microbiol Biotechnol. 2006;71:505–14. (PMID: 1622820310.1007/s00253-005-0186-4)
      Xie B, Chen D, Cheng G, Ying Z, Xie F, Li Y, et al. Effects of the purl gene expression level on the competitive nodulation ability of Sinorhizobium fredii. Curr Microbiol. 2009;59:193–8. (PMID: 1945900410.1007/s00284-009-9420-0)
      Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science. 2007;316:1307–12. (PMID: 1754089710.1126/science.1139548)
      Kim JK, Jang HA, Won YJ, Kikuchi Y, Heum Han S, Kim CH, et al. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug. ISME J. 2014;8:552–63. (PMID: 2408862710.1038/ismej.2013.168)
      An R, Grewal PS. Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS ONE. 2010;5:e13154. (PMID: 20957199295014010.1371/journal.pone.0013154)
      Zrenner R, Stitt M, Sonnewald U, Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol. 2006;57:805–36. (PMID: 1666978310.1146/annurev.arplant.57.032905.105421)
      Atkins CA, Smith PMC. Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Physiol. 2007;144:550–61.
      Ueda S, Ikeda M, Yamakawa T. Provision of carbon skeletons for amide synthesis in non-nodulated soybean and pea roots in response to the source of nitrogen supply. Soil Sci Plant Nutr. 2008;54:732–7. (PMID: 10.1111/j.1747-0765.2008.00293.x)
      Kaur H, Chowrasia S, Gaur VS, Mondal TK. Allantoin: emerging role in plant abiotic stress tolerance. Plant Mol Biol Rep. 2021;39:648–61. (PMID: 10.1007/s11105-021-01280-z)
      Paul MJ, Primavesi LF, Jhurreea D, Zhang Y. Trehalose metabolism and signaling. Annu Rev Plant Biol. 2008;59:417–41. (PMID: 1825770910.1146/annurev.arplant.59.032607.092945)
      Iturriaga G, Suárez R, Nova-Franco B. Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci. 2009;10:3793–810. (PMID: 19865519276916010.3390/ijms10093793)
      John R, Raja V, Ahmad M, Jan N, Majeed U, Ahmad S, et al. Trehalose: metabolism and role in stress signaling in plants. Stress signaling in plants: genomics and proteomics perspective, Volume 2. 2016. Springer International Publishing, pp 261–75.
      Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. Elife. 2020;9:1–28. (PMID: 10.7554/eLife.56275)
      Streeter JG. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol. 2003;95:484–91. (PMID: 1291169610.1046/j.1365-2672.2003.02017.x)
      Sugawara M, Cytryn EJ, Sadowsky MJ. Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl Environ Microbiol. 2010;76:1071–81. (PMID: 2002309010.1128/AEM.02483-09)
      Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, et al. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact. 2008;21:958–66. (PMID: 1853383610.1094/MPMI-21-7-0958)
      Mackay MA, Norton RS, Borowitzka LJ. Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol. 1984;130:2177–91.
      Reed RH, Richardson DL, Warr SRC, Stewart WDP. Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol. 1984;130:1–4.
      Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989,53:121–47.
      Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Dedysh SN, Kulichevskaya IS, et al. Novel mono-, di-, and trimethylornithine membrane lipids in northern wetland planctomycetes. Appl Environ Microbiol. 2013;79:6874–84. (PMID: 23995937381153710.1128/AEM.02169-13)
      Clifford EL, Varela MM, De Corte D, Bode A, Ortiz V, Herndl GJ, et al. Taurine is a major carbon and energy source for marine prokaryotes in the North Atlantic ocean off the Iberian Peninsula. Micro Ecol. 2019;78:299–312. (PMID: 10.1007/s00248-019-01320-y)
      Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101. (PMID: 2601730710.1038/nature14488)
      Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995,7:1085–97.
      Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol. 2012;12:39. (PMID: 22429339334222410.1186/1471-2229-12-39)
      Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, et al. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010;153:1526–38. (PMID: 20566705292390910.1104/pp.110.157370)
      Kouchi H. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res. 2004;11:263–74. (PMID: 1550025110.1093/dnares/11.4.263)
      Chen Y, Li F, Tian L, Huang M, Deng R, Li X, et al. The phenylalanine ammonia lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in Lotus japonicus -rhizobium symbioses. Mol Plant-Microbe Interact. 2017;30:739–53. (PMID: 2859826310.1094/MPMI-04-17-0080-R)
      Bragina A, Berg C, Cardinale M, Shcherbakov A, Chebotar V, Berg G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–13. (PMID: 2209434210.1038/ismej.2011.151)
      Bragina A, Berg C, Müller H, Moser D, Berg G. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci Rep. 2013;3:1955. (PMID: 23739741650481010.1038/srep01955)
    • Grant Information:
      DE-AC05-00R22725 DOE | SC | Biological and Environmental Research (BER); DEB-1737899 National Science Foundation (NSF)
    • Accession Number:
      7440-44-0 (Carbon)
      N762921K75 (Nitrogen)
    • Publication Date:
      Date Created: 20211130 Date Completed: 20220412 Latest Revision: 20221026
    • Publication Date:
      20250114
    • Accession Number:
      PMC8941135
    • Accession Number:
      10.1038/s41396-021-01136-0
    • Accession Number:
      34845335