Preparation, characterization, pharmacokinetics, and antirenal injury activity studies of Licochalcone A-loaded liposomes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 7706045 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-4514 (Electronic) Linking ISSN: 01458884 NLM ISO Abbreviation: J Food Biochem Subsets: MEDLINE
    • Publication Information:
      Publication: 2008- : Hoboken, NJ : Wiley
      Original Publication: Westport, Conn. : Food & Nutrition Press
    • Subject Terms:
    • Abstract:
      A liposome of Licochalcone A (LCA-Liposomes) was purposively prepared to ameliorate the low in vivo availability and efficacy of LCA. Physical characterization of LCA-Liposomes was carried out mainly by determining particle size, morphology, zeta potential (Z-potential), and efficiency of LCA encapsulation (EE) via appropriate techniques. Also, the rate of LCA release in vitro and distribution in vivo (plasma and tissues) was evaluated. Evaluation of the antirenal activity of LCA-liposomes was carried out by establishing chronic renal failure (CRF) model in mice through intragastric administration of adenine (200 mg/kg) and subsequent determination of biochemical parameters and examination of tissue sections. Respectively, the mean size of liposomal particles, Z-potential and EE of LCA-Liposomes were 71.78 ± 0.99 nm, -38.49 ± 0.06 mV, and 97.67 ± 1.72%. Pharmacokinetic and tissue distribution studies showed that LCA-Liposomes could improve the availability of LCA in the blood and tissues, whereas during pharmacodynamics studies, the liposome effectively improved the therapeutic effect of LCA on CRF mice by potentially protecting the renal tissues while exhibiting antioxidant activity. In conclusion, LCA-Liposomes could effectively improve the bioavailability of LCA and provide platform for the development of LCA-related functional products. PRACTICAL APPLICATIONS: As a traditional Chinese medicine, licorice is widely used in food and pharmaceutical industries. LCA is a small molecule flavonoid extracted from the root of licorice. In this study, LCA was loaded on liposome carriers, which significantly improved the water solubility and oral bioavailability, and proved that LCA-Liposomes have certain therapeutic effects on chronic renal failure, thereby providing a basis for the development of LCA into drugs or functional food in the future.
      (© 2021 Wiley Periodicals LLC.)
    • References:
      Ahmed, K. S., Hussein, S. A., Ali, A. H., Korma, S. A., Qiu, L., & Chen, J. (2019). Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. Journal of Drug Targeting, 27(7), 742-761. https://doi.org/10.1080/1061186X.2018.1527337.
      Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102-110. https://doi.org/10.1186/1556-276X-8-102.
      Cai, J., Jiao, X., Luo, W., Chen, J., Xu, X., Fang, Y. I., Ding, X., & Yu, X. (2019). Kidney injury molecule-1 expression predicts structural damage and outcome in histological acute tubular injury. Renal Failure, 41(1), 80-87. https://doi.org/10.1080/0886022X.2019.1578234.
      Chen, X., Liu, Z., Meng, R., Shi, C., & Guo, N. (2017). Antioxidative and anticancer properties of Licochalcone A from licorice. Journal of Ethnopharmacology, 198, 331-337. https://doi.org/10.1016/j.jep.2017.01.028.
      Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57-79. https://doi.org/10.3390/pharmaceutics10020057.
      Devaraj, G. N., Parakh, S. R., Devraj, R., Apte, S. S., Rao, B. R., & Rambhau, D. (2002). Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. Journal of Colloid and Interface Science, 251(2), 360-365. https://doi.org/10.1006/jcis.2002.8399.
      Diwan, V., Mistry, A., Gobe, G., & Brown, L. (2013). Adenine-induced chronic kidney and cardiovascular damage in rats. Journal of Pharmacological and Toxicological Methods, 68(2), 197-207. https://doi.org/10.1016/j.vascn.2013.05.006.
      Eto, N., Miyata, Y., Ohno, H., & Yamashita, T. (2005). Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrology Dialysis Transplantation, 20(7), 1378-1384. https://doi.org/10.1093/ndt/gfh781.
      Fu, H., Li, J., Li, Q.-X., Xia, L., & Shao, L. (2007). Protective effect of ligustrazine on accelerated anti-glomerular basement membrane antibody nephritis in rats is based on its antioxidant properties. European Journal of Pharmacology, 563(1-3), 197-202. https://doi.org/10.1016/j.ejphar.2007.02.015.
      Fu, Y., Chen, J., Li, Y.-J., Zheng, Y.-F., & Li, P. (2013). Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chemistry, 141(2), 1063-1071. https://doi.org/10.1016/j.foodchem.2013.03.089.
      Gao, Z., Zhang, C., Tian, C., Ren, Z., Song, X., Wang, X., Xu, N., Jing, H., Li, S., Liu, W., Zhang, J., & Jia, L. E. (2018). Characterization, antioxidation, anti-inflammation and renoprotection effects of selenized mycelia polysaccharides from Oudemansiella radicata. Carbohydrate Polymers, 181, 1224-1234. https://doi.org/10.1016/j.carbpol.2017.12.007.
      Haraguchi, H., Ishikawa, H., Mizutani, K., Tamura, Y., & Kinoshita, T. (1998). Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorganic & Medicinal Chemistry, 6(3), 339-347. https://doi.org/10.1016/S0968-0896(97)10034-7.
      Hernández-Caselles, T., Villalaín, J., & Gómez-Fernández, J. (2011). Stability of liposomes on long term storage. Journal of Pharmacy & Pharmacology, 42(6), 397-400. https://doi.org/10.1111/j.2042-7158.1990.tb06578.x.
      Hou, G. H., Jin, M. Z., Ye, Z. Y., Zhang, X. M., Huang, Q. L., & Ye, M. (2020). Ameliorate effects of soybean soluble polysaccharide on adenine-induced chronic renal failure in mice. International Journal of Biological Macromolecules, 149, 158-164. https://doi.org/10.1016/j.ijbiomac.2020.01.095.
      Hu, C., Liang, K., An, R., Wang, X. H., & You, L. S. (2018). The characterization, pharmacokinetic, and tissue distribution studies of TPGS-modified artesunate liposome in rats. Drug Development and Industrial Pharmacy, 44(9), 1528-1535. https://doi.org/10.1080/03639045.2018.1483383.
      Hu, J., & Liu, J. (2016). Licochalcone A attenuates lipopolysaccharide-induced acute kidney injury by inhibiting NF-kappa B activation. Inflammation, 39(2), 569-574.
      La, L., Wang, L. L., Qin, F., Jiang, J., He, S. Q., Wang, C. X., & Li, Y. H. (2018). Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: Regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. Journal of Ethnopharmacology, 219, 81-90. https://doi.org/10.1016/j.jep.2017.12.013.
      Li, H., Feng, Y., Sun, W., Kong, Y., & Jia, L. (2021). Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice. International Journal of Biological Macromolecules, 170, 652-663. https://doi.org/10.1016/j.ijbiomac.2020.12.159.
      Liu, J., Wang, Q., Adu-Frimpong, M., Wei, Q., Xie, Y., Zhang, K., Wei, C., Weng, W., Ji, H., Toreniyazov, E., Xu, X., & Yu, J. (2019). Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes. International Journal of Pharmaceutics, 563, 53-62. https://doi.org/10.1016/j.ijpharm.2019.03.034.
      Liu, Y. K., Sun, C. Y., Li, W. J., Adu-Frimpong, M., Wang, Q. L., Yu, J. N., & Xu, X. M. (2019). Preparation and characterization of syringic acid-loaded TPGS liposome with enhanced oral bioavailability and in vivo antioxidant efficiency. An Official Journal of the American Association of Pharmaceutical Scientists, 20(3), 98. https://doi.org/10.1208/s12249-019-1290-6.
      Man, N. A., Wang, Q., Li, H., Adu-Frimpong, M., Sun, C., Zhang, K., Yang, Q., Wei, Q., Ji, H., Toreniyazov, E., Yu, J., & Xu, X. (2019). Improved oral bioavailability of myricitrin by liquid self-microemulsifying drug delivery systems. Journal of Drug Delivery Science and Technology, 52, 597-606. https://doi.org/10.1016/j.jddst.2019.05.003.
      Mudi, A., Levy, C. S., Geel, J. A., & Poole, J. E. (2016). Paediatric cancer survivors demonstrate a high rate of subclinical renal dysfunction. Pediatric Blood & Cancer, 63(11), 2026-2032. https://doi.org/10.1002/pbc.26132.
      Nadimi, A. E., Ebrahimipour, S. Y., Afshar, E. G., Falahati-Pour, S. K., Ahmadi, Z., Mohammadinejad, R., & Mohamadi, M. (2018). Nano-scale drug delivery systems for antiarrhythmic agents. European Journal of Medicinal Chemistry, 157, 1153-1163. https://doi.org/10.1016/j.ejmech.2018.08.080.
      Ngai, H. H. Y., Sit, W. H., & Wan, J. M. F. (2005). The nephroprotective effects of the herbal medicine preparation, WH30(+), on the chemical-induced acute and chronic renal failure in rats. American Journal of Chinese Medicine, 33(3), 491-500.
      Pan, L., Zhang, S. W., Gu, K. R., & Zhang, N. (2018). Preparation of astaxanthin-loaded liposomes: Characterization, storage stability and antioxidant activity. Cyta-Journal of Food, 16(1), 607-618. https://doi.org/10.1080/19476337.2018.1437080.
      Parmar, N., Singla, N., Amin, S., & Kohli, K. (2011). Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids and Surfaces B-Biointerfaces, 86(2), 327-338. https://doi.org/10.1016/j.colsurfb.2011.04.016.
      Patil, A. R., Nimbalkar, M. S., Patil, P. S., Chougale, A. D., & Patil, P. B. (2020). Controlled release of poorly water soluble anticancerous drug camptothecin from magnetic nanoparticles. Materials Today-Proceedings, 23, 437-443. https://doi.org/10.1016/j.matpr.2020.02.064.
      Qiu, J., Feng, H., Xiang, H., Wang, D., Xia, L., Jiang, Y., Song, K., Lu, J., Yu, L. U., & Deng, X. (2010). Influence of subinhibitory concentrations of Licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus. FEMS Microbiology Letters, 307(2), 135-141. https://doi.org/10.1111/j.1574-6968.2010.01973.x.
      Silva, L. M., Marconato, D. G., da Silva, M. P. N., Raposo, N. R. B., Facchini, G. D. S., Macedo, G. C., Teixeira, F. D. S., da Silveira, B., Salvadori, M. C., Faria Pinto, P. D., Moraes, J. D., & Pittella, F. (2021). Licochalcone A-loaded solid lipid nanoparticles improve antischistosomal activity in vitro and in vivo. Nanomedicine, 16(19), 1641-1655. https://doi.org/10.2217/nnm-2021-0146.
      Sun, Y.-W., Wang, L.-H., Meng, D.-L., & Che, X. (2017). A green and facile preparation approach, Licochalcone A capped on hollow gold nanoparticles, for improving the solubility and dissolution of anticancer natural product. Oncotarget, 8(62), 105673-105681. https://doi.org/10.18632/oncotarget.22387.
      Wang, J., Zhang, Y. S., Thakur, K., Hussain, S. S., Zhang, J. G., Xiao, G. R., & Wei, Z. J. (2018). Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food and Chemical Toxicology, 120, 407-417. https://doi.org/10.1016/j.fct.2018.07.044.
      Wang, L. U., Zhong, C., Zu, Y., Zhao, X., Deng, Y., Wu, W., Sun, X., Wang, L., & Wu, M. (2019). Preparation and characterization of luteolin nanoparticles for enhance bioavailability and inhibit liver microsomal peroxidation in rats. Journal of Functional Foods, 55, 57-64. https://doi.org/10.1016/j.jff.2019.01.054.
      Wang, Y., Wang, S., Firempong, C. K., Zhang, H., Wang, M., Zhang, Y. A., Zhu, Y., Yu, J., & Xu, X. (2017). Enhanced solubility and bioavailability of Naringenin via liposomal nanoformulation: Preparation and in vitro and in vivo evaluations. An Official Journal of the American Association of Pharmaceutical Scientists, 18(3), 586-594. https://doi.org/10.1208/s12249-016-0537-8.
      Wei, C., Wang, Q., Weng, W., Wei, Q., Xie, Y., Adu-Frimpong, M., Toreniyazov, E., Ji, H., Xu, X., & Yu, J. (2019). The characterisation, pharmacokinetic and tissue distribution studies of TPGS modified myricetrin mixed micelles in rats. Journal of Microencapsulation, 36(3), 278-290. https://doi.org/10.1080/02652048.2019.1622606.
      Wei, Q., Yang, Q., Wang, Q., Sun, C., Zhu, Y., Niu, Y. A., Yu, J., & Xu, X. (2018). Formulation, characterization, and pharmacokinetic studies of 6-gingerol-loaded nanostructured lipid carriers. An Official Journal of the American Association of Pharmaceutical Scientists, 19(8), 3661-3669. https://doi.org/10.1208/s12249-018-1165-2.
      Weng, Q., Chen, L., Ye, L., Lu, X., Yu, Z., Wen, C., Chen, Y., & Huang, G. (2019). Determination of Licochalcone A in rat plasma by UPLC-MS/MS and its pharmacokinetics. Acta Chromatographica, 31(4), 262-265. https://doi.org/10.1556/1326.2018.00491.
      Weng, W., Wang, Q., Wei, C., Man, N. A., Zhang, K., Wei, Q., Adu-Frimpong, M., Toreniyazov, E., Ji, H., Yu, J., & Xu, X. (2019). Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. International Journal of Pharmaceutics, 572, e118735. https://doi.org/10.1016/j.ijpharm.2019.118735.
      Wu, P., Yu, T., Wu, J., & Chen, J. F. (2020). Licochalcone A induces ROS-mediated apoptosis through TrxR1 inactivation in colorectal cancer cells. Biomed Research International, 2020, 11. https://doi.org/10.1155/2020/5875074.
      Xie, Y. J., Wang, Q. L., Adu-Frimpong, M., Liu, J., Zhang, K. Y., Xu, X. M., & Yu, J. N. (2019). Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Development and Industrial Pharmacy, 45(8), 1224-1232. https://doi.org/10.1080/03639045.2019.1574812.
      Yang, Q. X., Wang, Q. L., Feng, Y. S., Wei, Q. Y., Sun, C. Y., Firempong, C. K., & Xu, X. M. (2019). Anti-hyperuricemic property of 6-shogaol via self-micro emulsifying drug delivery system in model rats: Formulation design, in vitro and in vivo evaluation. Drug Development and Industrial Pharmacy, 45(8), 1265-1276.
      Zhang, K., Wang, Q., Yang, Q., Wei, Q., Man, N. A., Adu-Frimpong, M., Toreniyazov, E., Ji, H., Yu, J., & Xu, X. (2019). Enhancement of oral bioavailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system. An Official Journal of the American Association of Pharmaceutical Scientists, 20(5), 218. https://doi.org/10.1208/s12249-019-1421-0.
      Zhang, Y., Chen, Y., Li, B., Ding, P., Jin, D., Hou, S., & Sheng, X. (2020). Original the effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomedicine & Pharmacotherapy, 129, 110408. https://doi.org/10.1016/j.biopha.2020.110408.
      Zhang, Y., Jing, Q., Hu, H., He, Z., Wu, T., Guo, T., & Feng, N. (2020). Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential. International Journal of Pharmaceutics, 580, e119183. https://doi.org/10.1016/j.ijpharm.2020.119183.
      Zhu, Y., Xu, W., Zhang, J., Liao, Y., Firempong, C. K., Adu-Frimpong, M., Deng, W., Zhang, H., Yu, J., & Xu, X. (2019). Self-microemulsifying drug delivery system for improved oral delivery of limonene: Preparation, characterization, in vitro and in vivo evaluation. An Official Journal of the American Association of Pharmaceutical Scientists, 20(4), 11. https://doi.org/10.1208/s12249-019-1361-8.
      Zhu, Z., Liu, J., Yang, Y., Adu-Frimpong, M., Ji, H., Toreniyazov, E., Wang, Q., Yu, J., & Xu, X. (2021). SMEDDS for improved oral bioavailability and anti-hyperuricemic activity of Licochalcone A. Journal of Microencapsulation. https://doi.org/10.1080/02652048.2021.1963341.
    • Contributed Indexing:
      Keywords: Licochalcone A; bioavailability; chronic renal failure; liposomes
    • Accession Number:
      0 (Chalcones)
      0 (Liposomes)
      JTV5467968 (licochalcone A)
    • Publication Date:
      Date Created: 20211123 Date Completed: 20220310 Latest Revision: 20220311
    • Publication Date:
      20221213
    • Accession Number:
      10.1111/jfbc.14007
    • Accession Number:
      34811762