Auditory-nerve responses in mice with noise-induced cochlear synaptopathy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Physiological Society Country of Publication: United States NLM ID: 0375404 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-1598 (Electronic) Linking ISSN: 00223077 NLM ISO Abbreviation: J Neurophysiol Subsets: MEDLINE
    • Publication Information:
      Publication: Bethesda Md : American Physiological Society
      Original Publication: Washington [etc.]
    • Subject Terms:
    • Abstract:
      Cochlear synaptopathy is the noise-induced or age-related loss of ribbon synapses between inner hair cells (IHCs) and auditory-nerve fibers (ANFs), first reported in CBA/CaJ mice. Recordings from single ANFs in anesthetized, noise-exposed guinea pigs suggested that neurons with low spontaneous rates (SRs) and high thresholds are more vulnerable than low-threshold, high-SR fibers. However, there is extensive postexposure regeneration of ANFs in guinea pigs but not in mice. Here, we exposed CBA/CaJ mice to octave-band noise and recorded sound-evoked and spontaneous activity from single ANFs at least 2 wk later. Confocal analysis of cochleae immunostained for pre- and postsynaptic markers confirmed the expected loss of 40%-50% of ANF synapses in the basal half of the cochlea; however, our data were not consistent with a selective loss of low-SR fibers. Rather they suggested a loss of both SR groups in synaptopathic regions. Single-fiber thresholds and frequency tuning recovered to pre-exposure levels; however, response to tone bursts showed increased peak and steady-state firing rates, as well as decreased jitter in first-spike latencies. This apparent gain-of-function increased the robustness of tone-burst responses in the presence of continuous masking noise. This study suggests that the nature of noise-induced synaptic damage varies between different species and that, in mouse, the noise-induced hyperexcitability seen in central auditory circuits is also observed at the level of the auditory nerve. NEW & NOTEWORTHY Noise-induced damage to synapses between inner hair cells and auditory-nerve fibers (ANFs) can occur without permanent hair cell damage, resulting in pathophysiology that "hides" behind normal thresholds. Prior single-fiber neurophysiology in guinea pig suggested that noise selectively targets high-threshold ANFs. Here, we show that the lingering pathophysiology differs in mouse, with both ANF groups affected and a paradoxical gain-of-function in surviving low-threshold fibers, including increased onset rate, decreased onset jitter, and reduced maskability.
    • References:
      J Neurosci. 2021 Jan 6;41(1):118-129. (PMID: 33177067)
      J Comp Neurol. 1991 Nov 8;313(2):240-58. (PMID: 1722487)
      Hear Res. 2016 Sep;339:12-22. (PMID: 27288592)
      Hear Res. 1990 Dec;50(1-2):245-57. (PMID: 2076976)
      J Neurosci. 2010 Jun 2;30(22):7587-97. (PMID: 20519533)
      Hear Res. 2017 Sep;353:213-223. (PMID: 28712672)
      Cell Tissue Res. 2015 Jul;361(1):129-58. (PMID: 25920587)
      J Assoc Res Otolaryngol. 2015 Apr;16(2):205-19. (PMID: 25676132)
      Hear Res. 1989 Dec;43(1):81-90. (PMID: 2613569)
      Curr Opin Physiol. 2020 Dec;18:123-129. (PMID: 33299958)
      Neuroscience. 2020 Mar 1;429:173-184. (PMID: 31935490)
      Hear Res. 2019 Sep 15;381:107782. (PMID: 31437652)
      J Neurophysiol. 2013 Aug;110(3):577-86. (PMID: 23596328)
      Hear Res. 1984 Oct;16(1):55-74. (PMID: 6511673)
      Biol Cybern. 1982;44(2):107-20. (PMID: 7115787)
      J Neurophysiol. 1993 Dec;70(6):2533-49. (PMID: 8120597)
      J Neurophysiol. 1996 Oct;76(4):2799-803. (PMID: 8899648)
      Front Syst Neurosci. 2014 Feb 21;8:26. (PMID: 24600357)
      Curr Opin Neurobiol. 2003 Aug;13(4):452-8. (PMID: 12965293)
      Hear Res. 1988 Oct;36(1):1-8. (PMID: 3198518)
      Synapse. 2015 May;69(5):242-55. (PMID: 25682928)
      Hear Res. 1980 Jul;3(1):45-63. (PMID: 7400048)
      Nat Neurosci. 2002 Feb;5(2):147-54. (PMID: 11802170)
      Eur J Neurosci. 2001 Sep;14(6):977-86. (PMID: 11595036)
      J Neurophysiol. 1984 Jun;51(6):1326-44. (PMID: 6737033)
      J Physiol. 1984 Feb;347:685-96. (PMID: 6707972)
      Hear Res. 1986;21(2):127-33. (PMID: 3700252)
      Neurotoxicology. 2014 Jan;40:86-96. (PMID: 24308912)
      Hear Res. 1984 Oct;16(1):43-53. (PMID: 6511672)
      J Comp Neurol. 2013 May 1;521(7):1510-32. (PMID: 23047723)
      J Neurophysiol. 2014 Sep 1;112(5):1025-39. (PMID: 24848461)
      Hear Res. 1989 Aug;41(1):61-9. (PMID: 2793615)
      Cell. 2018 Aug 23;174(5):1229-1246.e17. (PMID: 30078709)
      Exp Gerontol. 2016 Nov;84:61-70. (PMID: 27569111)
      Front Syst Neurosci. 2014 Feb 17;8:20. (PMID: 24596545)
      Hear Res. 1980 Oct;3(3):189-204. (PMID: 7440423)
      Hear Res. 2017 Jun;349:164-171. (PMID: 28069376)
      Brain Res. 1979 Sep 7;173(1):152-5. (PMID: 487078)
      J Neurophysiol. 2003 Nov;90(5):3178-200. (PMID: 14615429)
      J Neurosci. 2009 Nov 11;29(45):14077-85. (PMID: 19906956)
      Neuron. 2016 Feb 17;89(4):867-79. (PMID: 26833137)
      Nat Commun. 2018 Sep 12;9(1):3691. (PMID: 30209249)
      Hear Res. 1985 May;18(2):159-68. (PMID: 2995298)
      Nature. 2005 Apr 14;434(7035):889-94. (PMID: 15829963)
      Neuroscience. 2019 May 21;407:21-31. (PMID: 30553793)
      J Membr Biol. 2006 Feb-Mar;209(2-3):153-65. (PMID: 16773499)
      J Acoust Soc Am. 1974 Dec;56(6):1835-47. (PMID: 4443483)
      Neurobiol Aging. 2016 Aug;44:173-184. (PMID: 27318145)
      J Neurosci. 2015 May 13;35(19):7509-20. (PMID: 25972177)
      J Neurosci. 2012 Apr 4;32(14):4773-89. (PMID: 22492033)
      J Neurosci. 2013 Aug 21;33(34):13686-94. (PMID: 23966690)
      J Neurosci. 2011 Jan 19;31(3):801-8. (PMID: 21248103)
      J Comp Neurol. 1993 Jan 1;327(1):17-36. (PMID: 8432906)
      J Neurophysiol. 2003 Nov;90(5):2941-9. (PMID: 12904337)
      Sci Rep. 2016 Apr 27;6:25200. (PMID: 27117978)
      Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):883-8. (PMID: 10639174)
      J Neurophysiol. 2005 Jan;93(1):557-69. (PMID: 15456804)
      Hear Res. 2016 Feb;332:29-38. (PMID: 26657094)
      PLoS One. 2013 Dec 09;8(12):e81566. (PMID: 24349090)
      J Neurosci. 2016 Oct 12;36(41):10584-10597. (PMID: 27733610)
      Sci Rep. 2020 Nov 17;10(1):19945. (PMID: 33203940)
      Front Neurosci. 2019 Jun 13;13:620. (PMID: 31263398)
      Ciba Found Symp. 1970;:241-73. (PMID: 5210916)
      J Acoust Soc Am. 1978 Feb;63(2):442-55. (PMID: 670542)
      J Neurosci. 2019 Jun 5;39(23):4434-4447. (PMID: 30926748)
      J Acoust Soc Am. 1979 Jan;65(1):166-78. (PMID: 422812)
      J Assoc Res Otolaryngol. 2015 Dec;16(6):727-45. (PMID: 26323349)
      Neuroscience. 2019 May 21;407:8-20. (PMID: 30099118)
      Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4716-25. (PMID: 27462107)
      J Neurophysiol. 2014 Feb;111(3):552-64. (PMID: 24198321)
      Hear Res. 2013 Apr;298:104-8. (PMID: 23276730)
      J Neurosci. 2006 Feb 15;26(7):2115-23. (PMID: 16481444)
      Hear Res. 2020 May;390:107933. (PMID: 32203820)
      J Comp Neurol. 1978 Apr 15;178(4):661-78. (PMID: 632375)
      Science. 1982 Jun 11;216(4551):1239-41. (PMID: 7079757)
      J Assoc Res Otolaryngol. 2014 Feb;15(1):31-43. (PMID: 24113829)
      J Comp Neurol. 1997 May 5;381(2):188-202. (PMID: 9130668)
      Cell. 2018 Aug 23;174(5):1247-1263.e15. (PMID: 30078710)
      J Comp Neurol. 1996 Jul 22;371(2):208-21. (PMID: 8835727)
    • Grant Information:
      R01 DC000188 United States DC NIDCD NIH HHS
    • Contributed Indexing:
      Keywords: auditory nerve; cochlear synaptopathy; noise exposure; ribbon synapse; spiral ganglion neuron
    • Publication Date:
      Date Created: 20211117 Date Completed: 20220310 Latest Revision: 20221202
    • Publication Date:
      20221213
    • Accession Number:
      PMC8715054
    • Accession Number:
      10.1152/jn.00342.2021
    • Accession Number:
      34788179