Green Chemistry Production of Codlemone, the Sex Pheromone of the Codling Moth (Cydia pomonella), by Metabolic Engineering of the Oilseed Crop Camelina (Camelina sativa).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 7505563 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-1561 (Electronic) Linking ISSN: 00980331 NLM ISO Abbreviation: J Chem Ecol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Springer
      Original Publication: New York, Plenum Press.
    • Subject Terms:
    • Abstract:
      Synthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions. We used Camelina as a plant factory to produce mono- and di-unsaturated C 12 chain length moth sex pheromone precursors, (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid, by introducing a fatty acyl-ACP thioesterase FatB gene UcTE from California bay laurel (Umbellularia californica) and a bifunctional ∆9 desaturase gene Cpo_CPRQ from the codling moth, Cydia pomonella. Different transgene combinations were investigated for increasing pheromone precursor yield. The most productive Camelina line was engineered with a vector that contained one copy of UcTE and the viral suppressor protein encoding P19 transgenes and three copies of Cpo_CPRQ transgene. The T 2 generation of this line produced 9.4% of (E)-9-dodecenoic acid and 5.5% of (E,E)-8,10-dodecadienoic acid of the total fatty acids, and seeds were selected to advance top-performing lines to homozygosity. In the T 4 generation, production levels of (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid remained stable. The diene acid together with other seed fatty acids were converted into corresponding alcohols, and the bioactivity of the plant-derived codlemone was confirmed by GC-EAD and a flight tunnel assay. Trapping in orchards and home gardens confirmed significant and specific attraction of C. pomonella males to the plant-derived codlemone.
      (© 2021. The Author(s).)
    • References:
      Plant Cell. 1995 Mar;7(3):359-71. (PMID: 7734968)
      Virology. 2012 May 10;426(2):178-87. (PMID: 22361475)
      Plant Cell Rep. 2008 Feb;27(2):273-8. (PMID: 17899095)
      Science. 1971 Oct 15;174(4006):297-9. (PMID: 17778064)
      Science. 1992 Jul 3;257(5066):72-4. (PMID: 1621095)
      Top Curr Chem. 2004;239:51-96. (PMID: 22160231)
      J Exp Bot. 2011 May;62(8):2495-506. (PMID: 21504877)
      J Exp Bot. 2015 Jul;66(14):4251-65. (PMID: 25969557)
      Metab Eng. 2020 Nov;62:312-321. (PMID: 33045365)
      Plant Biotechnol J. 2016 Jun;14(6):1418-26. (PMID: 26628000)
      J Chem Ecol. 1988 Mar;14(3):903-15. (PMID: 24276140)
      J Chem Ecol. 2010 Jan;36(1):80-100. (PMID: 20108027)
      Plant Cell. 2004 May;16(5):1235-50. (PMID: 15084715)
      BMC Biol. 2021 Apr 23;19(1):83. (PMID: 33892710)
      Microb Cell Fact. 2013 Dec 13;12:125. (PMID: 24330839)
      Sci Rep. 2015 Jun 25;5:11183. (PMID: 26108150)
      Arch Biochem Biophys. 1991 Feb 1;284(2):306-12. (PMID: 1989513)
      J Chem Ecol. 1985 Mar;11(3):265-77. (PMID: 24309959)
      Biochimie. 2016 Jan;120:9-16. (PMID: 26107412)
      FEBS Lett. 2013 Apr 2;587(7):936-42. (PMID: 23454211)
      Plant Cell. 2013 Sep;25(9):3506-18. (PMID: 24076979)
      Arabidopsis Book. 2013;11:e0161. (PMID: 23505340)
      Plant Mol Biol. 1992 Sep;19(6):937-49. (PMID: 1511139)
      Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10509-10513. (PMID: 16798877)
      Plant Biotechnol J. 2013 Aug;11(6):759-69. (PMID: 23551501)
      J Chem Ecol. 1996 Mar;22(3):415-23. (PMID: 24227482)
      Plant Methods. 2009 Oct 28;5:14. (PMID: 19863796)
      Plant Biotechnol J. 2009 Dec;7(9):914-24. (PMID: 19843252)
      Genet Eng (N Y). 1996;18:111-33. (PMID: 8785117)
      Virology. 1997 Feb 17;228(2):132-40. (PMID: 9123819)
      Plant J. 2015 Dec;84(5):1021-33. (PMID: 26505880)
      Plant Cell. 2004 Oct;16(10):2561-72. (PMID: 15367719)
      Plant Biotechnol J. 2003 Nov;1(6):479-90. (PMID: 17134405)
      Nat Commun. 2014 Feb 25;5:3353. (PMID: 24569486)
      Plant Mol Biol. 1996 Nov;32(4):579-88. (PMID: 8980510)
      Annu Rev Entomol. 2008;53:503-22. (PMID: 17877451)
      Science. 1983 Jun 24;220(4604):1387-9. (PMID: 17730655)
    • Grant Information:
      RBP 14-0037 stiftelsen för strategisk forskning; No. 760798 horizon 2020 framework programme; CTS 14:307 carl tryggers stiftelse för vetenskaplig forskning; CTS KF17:15 carl tryggers stiftelse för vetenskaplig forskning; 2010-857 svenska forskningsrådet formas; 2015-1336 svenska forskningsrådet formas; NEB-30-131 nebraska agricultural experiment station-usda hatch act
    • Contributed Indexing:
      Keywords: Acyl-ACP thioesterase; Agrobacterium-based floral-dip transformation; Bioassay; Conjugated double bonds; Multi-gene copies; P19; Plant factory; ∆9 desaturase
    • Accession Number:
      0 (Sex Attractants)
      178A96NLP2 (Dodecanol)
      33956-49-9 (8,10-dodecadien-1-ol)
    • Publication Date:
      Date Created: 20211111 Date Completed: 20211215 Latest Revision: 20220815
    • Publication Date:
      20240829
    • Accession Number:
      PMC8642345
    • Accession Number:
      10.1007/s10886-021-01316-4
    • Accession Number:
      34762210