Mutation rate dynamics reflect ecological change in an emerging zoonotic pathogen.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101239074 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7404 (Electronic) Linking ISSN: 15537390 NLM ISO Abbreviation: PLoS Genet Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, c2005-
    • Subject Terms:
    • Abstract:
      Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Philos Trans R Soc Lond B Biol Sci. 2019 Sep 30;374(1782):20180328. (PMID: 31401968)
      Mol Microbiol. 2006 May;60(4):820-7. (PMID: 16677295)
      PLoS Comput Biol. 2017 Jun 8;13(6):e1005595. (PMID: 28594827)
      Am J Hum Genet. 1950 Jun;2(2):111-76. (PMID: 14771033)
      Nat Rev Microbiol. 2018 Jun;16(6):355-367. (PMID: 29599457)
      PLoS Pathog. 2018 Oct 30;14(10):e1007413. (PMID: 30376582)
      Science. 2000 May 19;288(5469):1251-4. (PMID: 10818002)
      Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4. (PMID: 1831267)
      Mol Biol Evol. 2021 Apr 13;38(4):1570-1579. (PMID: 33313861)
      Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
      Bioinformatics. 2015 Oct 15;31(20):3350-2. (PMID: 26099265)
      Cell. 2002 Mar 8;108(5):583-6. (PMID: 11893328)
      Nat Commun. 2015 Mar 31;6:6740. (PMID: 25824154)
      Microb Pathog. 2017 Mar;104:175-179. (PMID: 28111327)
      Clin Microbiol Infect. 2016 Jun;22(6):566.e1-7. (PMID: 27021422)
      J Mol Evol. 1992 Mar;34(3):189-200. (PMID: 1588594)
      Lancet Infect Dis. 2007 Mar;7(3):201-9. (PMID: 17317601)
      Nat Rev Genet. 2013 Dec;14(12):827-39. (PMID: 24166031)
      Nucleic Acids Res. 2017 Jul 3;45(W1):W30-W35. (PMID: 28472413)
      Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
      Science. 2001 May 11;292(5519):1096-9. (PMID: 11352062)
      Mol Biol Evol. 2017 Sep 1;34(9):2163-2172. (PMID: 28645195)
      Proc Biol Sci. 2013 Feb 27;280(1757):20130007. (PMID: 23446530)
      Genome Biol Evol. 2018 Mar 1;10(3):723-730. (PMID: 29415256)
      Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83. (PMID: 22991466)
      Science. 2009 Jan 16;323(5912):379-82. (PMID: 19150844)
      Curr Opin Microbiol. 2001 Oct;4(5):582-5. (PMID: 11587936)
      Genome Res. 2017 May;27(5):722-736. (PMID: 28298431)
      Nature. 1997 Jun 12;387(6634):700-2. (PMID: 9192893)
      ISME J. 2017 Jul;11(7):1511-1520. (PMID: 28291233)
      Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18488-92. (PMID: 23077252)
      PLoS Biol. 2020 Mar 10;18(3):e3000617. (PMID: 32155146)
      Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. (PMID: 26476454)
      Science. 1996 Nov 15;274(5290):1208-11. (PMID: 8895473)
      Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
      Front Microbiol. 2018 Mar 15;9:480. (PMID: 29599763)
      PLoS Biol. 2019 May 13;17(5):e3000265. (PMID: 31083647)
      Mol Biol Evol. 2009 Feb;26(2):345-55. (PMID: 18984902)
      Genetics. 1975 Apr;79(4):649-60. (PMID: 1132684)
      Mol Biol Evol. 2014 Jan;31(1):232-8. (PMID: 24170494)
      Genome Biol. 2020 Jul 22;21(1):180. (PMID: 32698896)
      Mol Cell. 2019 Aug 8;75(3):421-425. (PMID: 31398322)
      Genome Med. 2015 Dec 07;7:127. (PMID: 26643039)
      Bioinformatics. 2004 Jan 22;20(2):289-90. (PMID: 14734327)
      Science. 2013 Dec 13;342(6164):1364-7. (PMID: 24231808)
      Mol Microbiol. 2001 May;40(3):645-55. (PMID: 11359570)
      Elife. 2017 May 02;6:. (PMID: 28460660)
      Mol Ecol. 2016 Aug;25(16):3769-75. (PMID: 27357487)
      Nat Rev Microbiol. 2016 Mar;14(3):150-62. (PMID: 26806595)
      Nat Rev Genet. 2016 Oct 14;17(11):704-714. (PMID: 27739533)
      Bioinformatics. 2014 Jul 15;30(14):2068-9. (PMID: 24642063)
      Trends Ecol Evol. 2017 Dec;32(12):936-947. (PMID: 29054300)
      Science. 1997 Sep 19;277(5333):1833-4. (PMID: 9324769)
      Mol Biol Evol. 2017 Feb 1;34(2):419-436. (PMID: 27836985)
    • Grant Information:
      United Kingdom WT_ Wellcome Trust; MR/V032836/1 United Kingdom MRC_ Medical Research Council; 109385/Z/15/Z United Kingdom WT_ Wellcome Trust; BB/L018934/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
    • Publication Date:
      Date Created: 20211108 Date Completed: 20220106 Latest Revision: 20230322
    • Publication Date:
      20231215
    • Accession Number:
      PMC8601623
    • Accession Number:
      10.1371/journal.pgen.1009864
    • Accession Number:
      34748531