Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: BMJ Publishing Group Ltd Country of Publication: England NLM ID: 101620585 Publication Model: Print Cited Medium: Internet ISSN: 2051-1426 (Electronic) Linking ISSN: 20511426 NLM ISO Abbreviation: J Immunother Cancer Subsets: MEDLINE
- Publication Information:
Publication: 2020- : London, United Kingdom : BMJ Publishing Group Ltd.
Original Publication: London : BioMed Central, 2013-
- Subject Terms:
- Abstract:
Background: Immunotherapy against solid tumors has long been hampered by the development of immunosuppressive tumor microenvironment, and the lack of a specific tumor-associated antigen that could be targeted in different kinds of solid tumors. Human leukocyte antigen G (HLA-G) is an immune checkpoint protein (ICP) that is neoexpressed in most tumor cells as a way to evade immune attack and has been recently demonstrated as a useful target for chimeric antigen receptor (CAR)-T therapy of leukemia by in vitro studies. Here, we design and test for targeting HLA-G in solid tumors using a CAR strategy.
Methods: We developed a novel CAR strategy using natural killer (NK) cell as effector cells, featuring enhanced cytolytic effect via DAP12-based intracellular signal amplification. A single-chain variable fragment (scFv) against HLA-G is designed as the targeting moiety, and the construct is tested both in vitro and in vivo on four different solid tumor models. We also evaluated the synergy of this anti-HLA-G CAR-NK strategy with low-dose chemotherapy as combination therapy.
Results: HLA-G CAR-transduced NK cells present effective cytolysis of breast, brain, pancreatic, and ovarian cancer cells in vitro, as well as reduced xenograft tumor growth with extended median survival in orthotopic mouse models. In tumor coculture assays, the anti-HLA-G scFv moiety promotes Syk/Zap70 activation of NK cells, suggesting reversal of the HLA-G-mediated immunosuppression and hence restoration of native NK cytolytic functions. Tumor expression of HLA-G can be further induced using low-dose chemotherapy, which when combined with anti-HLA-G CAR-NK results in extensive tumor ablation both in vitro and in vivo. This upregulation of tumor HLA-G involves inhibition of DNMT1 and demethylation of transporter associated with antigen processing 1 promoter.
Conclusions: Our novel CAR-NK strategy exploits the dual nature of HLA-G as both a tumor-associated neoantigen and an ICP to counteract tumor spread. Further ablation of tumors can be boosted when combined with administration of chemotherapeutic agents in clinical use. The readiness of this novel strategy envisions a wide applicability in treating solid tumors.
Competing Interests: Competing interests: No, there are no competing interests.
(© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.)
- References:
J Immunother Cancer. 2017 Nov 21;5(1):90. (PMID: 29157300)
J Immunol. 2018 Feb 1;200(3):1008-1015. (PMID: 29282306)
J Reprod Immunol. 1999 Jul;43(2):253-61. (PMID: 10479061)
Semin Oncol. 1997 Apr;24(2 Suppl 7):S7-24-S7-28. (PMID: 9194476)
Diabetes. 2006 May;55(5):1214-22. (PMID: 16644675)
Clin Cancer Res. 2008 Oct 15;14(20):6674-82. (PMID: 18927310)
Int J Clin Oncol. 2007 Oct;12(5):341-9. (PMID: 17929115)
Cancer Cell. 2019 Feb 11;35(2):221-237.e8. (PMID: 30753824)
Front Immunol. 2020 Aug 14;11:1685. (PMID: 32922387)
Eur J Immunol. 2003 Jan;33(1):125-34. (PMID: 12594841)
Nat Commun. 2018 Jan 16;9(1):248. (PMID: 29339738)
Lab Invest. 2012 Sep;92(9):1342-57. (PMID: 22801299)
Blood. 2004 Nov 15;104(10):3153-60. (PMID: 15284117)
J Immunol Res. 2016;2016:4326495. (PMID: 27652273)
Mol Pharmacol. 2004 Dec;66(6):1415-20. (PMID: 15340041)
Science. 1992 Mar 6;255(5049):1264-6. (PMID: 1546329)
Int J Mol Med. 2012 Dec;30(6):1505-11. (PMID: 23007409)
Cancer Chemother Pharmacol. 1986;17(3):277-80. (PMID: 2427240)
Lancet. 2020 Sep 19;396(10254):839-852. (PMID: 32888407)
J Immunother Cancer. 2021 Mar;9(3):. (PMID: 33737343)
Oncotarget. 2014 Aug 30;5(16):6923-35. (PMID: 25071011)
PLoS One. 2017 Jun 16;12(6):e0179501. (PMID: 28622390)
N Engl J Med. 2014 Oct 16;371(16):1507-17. (PMID: 25317870)
Gene Ther. 2015 Aug;22(8):675-84. (PMID: 25830550)
Clin Lymphoma Myeloma Leuk. 2020 Mar;20(3):e118-e123. (PMID: 31948859)
Sci Transl Med. 2013 Mar 20;5(177):177ra38. (PMID: 23515080)
J Hematol Oncol. 2020 Dec 7;13(1):168. (PMID: 33287875)
Cancer Chemother Pharmacol. 1987;20(3):219-22. (PMID: 3315280)
Cancer J. 2015 Nov-Dec;21(6):486-91. (PMID: 26588681)
Oncogenesis. 2020 Aug 13;9(8):72. (PMID: 32792499)
Clin Cancer Res. 2018 Mar 15;24(6):1246-1247. (PMID: 29348296)
Int J Cancer. 2008 Jul 1;123(1):8-13. (PMID: 18425818)
Hum Immunol. 2013 Mar;74(3):286-9. (PMID: 23238216)
Biomark Res. 2020 Jun 3;8:19. (PMID: 32514352)
J Clin Pathol. 2018 Mar;71(3):189-194. (PMID: 29097600)
Nature. 2017 Jul 26;547(7664):E19-E20. (PMID: 28748932)
Annu Rev Med. 2017 Jan 14;68:139-152. (PMID: 27860544)
Clin Cancer Res. 2020 Oct 15;26(20):5368-5379. (PMID: 32873573)
Clin Cancer Res. 2020 Sep 1;26(17):4494-4502. (PMID: 32522887)
Mol Ther. 2013 Apr;21(4):904-12. (PMID: 23423337)
Blood. 2008 May 15;111(10):4862-70. (PMID: 18334671)
Front Immunol. 2020 Aug 28;11:1613. (PMID: 32983083)
Clin Cancer Res. 2013 Oct 15;19(20):5564-71. (PMID: 23897901)
Front Immunol. 2017 May 31;8:631. (PMID: 28620386)
Front Immunol. 2020 Jun 17;11:1109. (PMID: 32625204)
Mol Ther Oncolytics. 2020 May 26;17:571-585. (PMID: 32637575)
J Transl Med. 2012 Feb 13;10:29. (PMID: 22330761)
J Immunol. 2002 May 1;168(9):4772-80. (PMID: 11971028)
EBioMedicine. 2020 Sep;59:102975. (PMID: 32853984)
Front Immunol. 2015 Jun 05;6:298. (PMID: 26097483)
Oncoimmunology. 2016 Oct 28;6(1):e1250050. (PMID: 28197367)
Cancer Res. 1986 May;46(5):2295-9. (PMID: 3697976)
Cancer Lett. 2018 Apr 10;419:210-221. (PMID: 29414305)
Eur J Immunol. 2012 Jul;42(7):1833-42. (PMID: 22585684)
Cytokine Growth Factor Rev. 2016 Oct;31:73-81. (PMID: 27502919)
J Hematol Oncol. 2018 Feb 13;11(1):22. (PMID: 29433552)
N Engl J Med. 2017 Dec 28;377(26):2531-2544. (PMID: 29226797)
Cell Stem Cell. 2018 Aug 02;23(2):181-192.e5. (PMID: 30082067)
Nat Rev Clin Oncol. 2011 Mar;8(3):151-60. (PMID: 21364688)
Biomark Res. 2020 Nov 2;8(1):57. (PMID: 33292688)
Cell Mol Life Sci. 2002 Sep;59(9):1460-6. (PMID: 12440768)
Clin Pharmacokinet. 1991 Oct;21(4):242-61. (PMID: 1760899)
Mol Cancer. 2019 Jan 15;18(1):10. (PMID: 30646912)
- Contributed Indexing:
Keywords: combination; drug therapy; immunotherapy; killer cells; natural
- Accession Number:
0 (Antigens, Neoplasm)
0 (HLA Antigens)
0 (Receptors, Chimeric Antigen)
- Publication Date:
Date Created: 20211019 Date Completed: 20220112 Latest Revision: 20220112
- Publication Date:
20221213
- Accession Number:
PMC8524382
- Accession Number:
10.1136/jitc-2021-003050
- Accession Number:
34663641
No Comments.