Gene expression changes in vastus lateralis muscle after different strength training regimes during rehabilitation following anterior cruciate ligament reconstruction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Impaired muscle regeneration has repeatedly been described after anterior cruciate ligament reconstruction (ACL-R). The results of recent studies provided some evidence for negative alterations in knee extensor muscles after ACL-R causing persisting strength deficits in spite of the regain of muscle mass. Accordingly, we observed that 12 weeks of concentric/eccentric quadriceps strength training with eccentric overload (CON/ECC+) induced a significantly greater hypertrophy of the atrophied quadriceps muscle after ACL-R than conventional concentric/eccentric quadriceps strength training (CON/ECC). However, strength deficits persisted and there was an unexpected increase in the proportion of slow type I fibers instead of the expected shift towards a faster muscle phenotype after CON/ECC+. In order to shed further light on muscle recovery after ACL-R, the steady-state levels of 84 marker mRNAs were analyzed in biopsies obtained from the vastus lateralis muscle of 31 subjects before and after 12 weeks of CON/ECC+ (n = 18) or CON/ECC strength training (n = 13) during rehabilitation after ACL-R using a custom RT2 Profiler PCR array. Significant (p < 0.05) changes were detected in the expression of 26 mRNAs, several of them involved in muscle wasting/atrophy. A different pattern with regard to the strength training mode was observed for 16 mRNAs, indicating an enhanced hypertrophic stimulus, mechanical sensing or fast contractility after CON/ECC+. The effects of the type of autograft (quadriceps, QUAD, n = 19, or semitendinosus tendon, SEMI, n = 12) were reflected in the lower expression of 6 mRNAs involved in skeletal muscle hypertrophy or contractility in QUAD. In conclusion, the greater hypertrophic stimulus and mechanical stress induced by CON/ECC+ and a beginning shift towards a faster muscle phenotype after CON/ECC+ might be indicated by significant gene expression changes as well as still ongoing muscle wasting processes and a negative impact of QUAD autograft.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Eur J Appl Physiol. 2006 Aug;97(6):643-63. (PMID: 16845551)
      FASEB J. 2004 Jun;18(9):1025-7. (PMID: 15084522)
      J Bone Joint Surg Am. 2016 Sep 21;98(18):1541-7. (PMID: 27655981)
      Eur J Appl Physiol. 2010 Mar;108(4):821-36. (PMID: 19937450)
      J Physiol. 2002 Aug 15;543(Pt 1):297-306. (PMID: 12181300)
      Neuromuscul Disord. 2003 Sep;13(7-8):519-31. (PMID: 12921789)
      Arthritis Rheum. 2011 May;63(5):1343-8. (PMID: 21538317)
      J Physiol. 2007 Jan 15;578(Pt 2):579-93. (PMID: 17095559)
      Circulation. 2012 Jun 5;125(22):2716-27. (PMID: 22565934)
      Med Sci Sports Exerc. 2018 Jun;50(6):1152-1161. (PMID: 29389836)
      J Musculoskelet Neuronal Interact. 2017 Jun 1;17(2):8-18. (PMID: 28574407)
      Am J Sports Med. 2005 Mar;33(3):402-7. (PMID: 15716256)
      Skelet Muscle. 2018 Mar 29;8(1):11. (PMID: 29598826)
      J Sport Rehabil. 2020 May 1;29(8):1194-1203. (PMID: 32357316)
      Mol Med. 2018 Sep 18;24(1):48. (PMID: 30241458)
      Front Physiol. 2018 Sep 25;9:1343. (PMID: 30337877)
      Med Sci Sports Exerc. 2004 Apr;36(4):574-82. (PMID: 15064583)
      Sports Med. 2020 Jul;50(7):1393-1403. (PMID: 32125668)
      Med Sci Sports Exerc. 2003 Jun;35(6):923-9. (PMID: 12783039)
      Semin Cell Dev Biol. 2017 Dec;72:19-32. (PMID: 29127046)
      Amino Acids. 2009 Jul;37(2):297-308. (PMID: 18661258)
      J Orthop Res. 2020 Mar;38(3):598-608. (PMID: 31608490)
      Scand J Clin Lab Invest. 1975 Nov;35(7):609-16. (PMID: 1108172)
      J Gerontol A Biol Sci Med Sci. 2011 Aug;66(8):855-65. (PMID: 21665986)
      J Appl Physiol (1985). 2005 Jan;98(1):46-52. (PMID: 15298986)
      Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9306-11. (PMID: 11459935)
      J Appl Physiol (1985). 2007 Nov;103(5):1744-51. (PMID: 17823296)
      Gene. 2016 May 10;582(1):1-13. (PMID: 26774798)
      Pflugers Arch. 2003 Sep;446(6):742-51. (PMID: 12861415)
      Braz J Med Biol Res. 2012 Aug;45(8):711-5. (PMID: 22584641)
      Sports Med. 2017 May;47(5):917-941. (PMID: 27647157)
      Eur J Appl Physiol. 2013 Mar;113(3):641-50. (PMID: 22898716)
      Acta Physiol Scand. 2004 Sep;182(1):77-88. (PMID: 15329060)
      Muscle Nerve. 2015 Dec;52(6):1098-101. (PMID: 26372908)
      J Appl Physiol (1985). 2008 May;104(5):1476-84. (PMID: 18356484)
      J Physiol. 2009 Dec 15;587(Pt 24):5951-8. (PMID: 19884317)
      Muscle Nerve. 2013 May;47(5):748-59. (PMID: 23519763)
      Am J Sports Med. 2019 May;47(6):1385-1395. (PMID: 30995070)
      J Magn Reson Imaging. 2015 Aug;42(2):515-25. (PMID: 25446958)
      Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13385-90. (PMID: 18765796)
      Med Sci Sports Exerc. 2007 Feb;39(2):289-97. (PMID: 17277593)
      Scand J Med Sci Sports. 2011 Apr;21(2):215-23. (PMID: 19903317)
      J Appl Physiol (1985). 2012 Jan;112(2):289-95. (PMID: 22052872)
      J Orthop Res. 2017 Sep;35(9):1876-1885. (PMID: 27935172)
      Appl Physiol Nutr Metab. 2015 Aug;40(8):788-796. (PMID: 26201856)
    • Publication Date:
      Date Created: 20211014 Date Completed: 20211125 Latest Revision: 20211125
    • Publication Date:
      20240829
    • Accession Number:
      PMC8516190
    • Accession Number:
      10.1371/journal.pone.0258635
    • Accession Number:
      34648569