Role of Fucoxanthin towards Cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Taylor & Francis Country of Publication: United States NLM ID: 101581063 Publication Model: Print Cited Medium: Internet ISSN: 2165-5987 (Electronic) Linking ISSN: 21655979 NLM ISO Abbreviation: Bioengineered Subsets: MEDLINE
    • Publication Information:
      Publication: 2015- : Philadelphia, PA : Taylor & Francis
      Original Publication: Austin : Landes Bioscience
    • Subject Terms:
    • Abstract:
      Kidney damages caused by cadmium are considered to be one of the most dangerous consequences for the human body. This study aimed to investigate the protective effects of fucoxanthin supplementation on mice models subjected to cadmium-induced kidney damage. The mice treated with cadmium chloride (CdCl 2 ) were observed to have significantly reduced the cross-section area of glomeruli. Cadmium exposure has also caused the damage of the structural integrity of mitochondria and increased blood urea nitrogen (BUN), kidney injury molecule 1 (KIM1), and neutrophil gelatinase associated lipocalin (NGAL) levels. Peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) levels in cadmium-exposed mice were markedly declined. Caspase3, caspase8, and caspase9 gene expressions in association with apoptosis were dramatically elevated in renal tissues. The CdCl 2 treated mice were orally administered with 50 mg/kg Shenfukang, 10 mg/kg, 25 mg/kg, and 50 mg/kg fucoxanthin for 14 days. The results revealed that high doses of fucoxanthin administration significantly decreased BUN, KIM1, NGAL levels, increasing POD, SOD, CAT, and ascorbate APX levels. Fucoxanthin administration also promoted recovery of the renal functions, micro-structural organization, and ultra-structural organization in the renal cells. In summary, the ameliorative effects of fucoxanthin supplementation against cadmium-induced kidney damage were mediated via inhibiting oxidative stress and apoptosis, promoting the recovery of structural integrity of mitochondria.
    • References:
      Biol Trace Elem Res. 2021 May;199(5):1877-1884. (PMID: 32691210)
      Mutat Res. 1998 Jun 18;402(1-2):159-63. (PMID: 9675267)
      Biosci Biotechnol Biochem. 2011;75(4):757-60. (PMID: 21512228)
      Mar Drugs. 2016 May 11;14(5):. (PMID: 27187417)
      Mar Drugs. 2013 Jul 23;11(7):2667-81. (PMID: 23880936)
      Bioengineered. 2020 Dec;11(1):141-153. (PMID: 31994978)
      Bioengineered. 2021 Dec;12(1):4868-4877. (PMID: 34346829)
      Free Radic Biol Med. 2008 Aug 15;45(4):475-81. (PMID: 18501199)
      J Nanosci Nanotechnol. 2021 Mar 1;21(3):1636-1640. (PMID: 33404427)
      Environ Sci Pollut Res Int. 2021 Dec;28(48):68498-68512. (PMID: 34275073)
      Int J Biochem Cell Biol. 2007;39(9):1551-61. (PMID: 17590379)
      Toxicol Ind Health. 2011 Apr;27(3):249-56. (PMID: 21148202)
      Zhong Yao Cai. 2001 Feb;24(2):116-20. (PMID: 11402726)
      Int J Mol Sci. 2020 Dec 04;21(23):. (PMID: 33291743)
      Drug Res (Stuttg). 2020 Nov;70(11):503-511. (PMID: 32820471)
      Biol Trace Elem Res. 2021 Oct;199(10):3846-3868. (PMID: 33405085)
      Chem Res Toxicol. 2021 Mar 15;34(3):713-722. (PMID: 33448797)
      Toxicol Appl Pharmacol. 2003 Feb 1;186(3):163-88. (PMID: 12620369)
      J Am Soc Nephrol. 2014 Oct;25(10):2177-86. (PMID: 24904085)
      Environ Health Perspect. 2010 Feb;118(2):182-90. (PMID: 20123617)
      Toxicol Appl Pharmacol. 2005 May 1;204(3):274-308. (PMID: 15845419)
      Pol Merkur Lekarski. 2020 Dec 22;48(288):437-442. (PMID: 33387433)
      Biosci Biotechnol Biochem. 2011;75(5):1013-5. (PMID: 21597166)
      Toxicol Appl Pharmacol. 2009 Aug 1;238(3):201-8. (PMID: 19409405)
      J Thorac Cardiovasc Surg. 1980 Mar;79(3):413-24. (PMID: 6243726)
      Toxicol Lett. 2003 Jan 31;137(1-2):65-83. (PMID: 12505433)
      Environ Res. 2021 Apr;195:110799. (PMID: 33508259)
      Eur J Pharmacol. 2010 Dec 15;649(1-3):369-75. (PMID: 20868674)
      Toxicology. 2001 Jun 21;163(2-3):93-100. (PMID: 11516518)
      Toxicol Lett. 2010 Sep 15;198(1):49-55. (PMID: 20417263)
      Urol Res. 2006 Feb;34(1):41-6. (PMID: 16429300)
      Br J Cancer. 1972 Aug;26(4):239-57. (PMID: 4561027)
      Biotechnol J. 2010 Sep;5(9):961-9. (PMID: 20845386)
      Antioxidants (Basel). 2020 Aug 16;9(8):. (PMID: 32824292)
      Methods Mol Biol. 2015;1275:173-9. (PMID: 25697660)
      Protoplasma. 2017 Mar;254(2):817-837. (PMID: 27352314)
      Lancet Oncol. 2006 Feb;7(2):119-26. (PMID: 16455475)
      Front Pharmacol. 2020 Sep 02;11:556248. (PMID: 32982754)
      Prog Lipid Res. 2007 Nov;46(6):328-75. (PMID: 17765976)
      Bioengineered. 2019 Dec;10(1):501-512. (PMID: 31633448)
    • Contributed Indexing:
      Keywords: Apoptosis; cadmium chloride; fucoxanthin; oxidative stress; renal function
    • Accession Number:
      0 (Antioxidants)
      0 (Xanthophylls)
      00BH33GNGH (Cadmium)
      06O0TC0VSM (fucoxanthin)
    • Publication Date:
      Date Created: 20210927 Date Completed: 20220222 Latest Revision: 20220222
    • Publication Date:
      20240829
    • Accession Number:
      PMC8806766
    • Accession Number:
      10.1080/21655979.2021.1973875
    • Accession Number:
      34569908