Rs1h -/y exon 3-del rat model of X-linked retinoschisis with early onset and rapid phenotype is rescued by RS1 supplementation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 9421525 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5462 (Electronic) Linking ISSN: 09697128 NLM ISO Abbreviation: Gene Ther Subsets: MEDLINE
    • Publication Information:
      Publication: London : Nature Publishing Group
      Original Publication: Houndmills, Basingstoke, Hampshire, UK : Macmillan Press Ltd., c1994-
    • Subject Terms:
    • Abstract:
      Animal models of X-linked juvenile retinoschisis (XLRS) are valuable tools for understanding basic biochemical function of retinoschisin (RS1) protein and to investigate outcomes of preclinical efficacy and toxicity studies. In order to work with an eye larger than mouse, we generated and characterized an Rs1h -/y knockout rat model created by removing exon 3. This rat model expresses no normal RS1 protein. The model shares features of an early onset and more severe phenotype of human XLRS. The morphologic pathology includes schisis cavities at postnatal day 15 (p15), photoreceptors that are misplaced into the subretinal space and OPL, and a reduction of photoreceptor cell numbers by p21. By 6 mo age only 1-3 rows of photoreceptors nuclei remain, and the inner/outer segment layers and the OPL shows major changes. Electroretinogram recordings show functional loss with considerable reduction of both the a-wave and b-wave by p28, indicating early age loss and dysfunction of photoreceptors. The ratio of b-/a-wave amplitudes indicates impaired synaptic transmission to bipolar cells in addition. Supplementing the Rs1h -/y exon3-del retina with normal human RS1 protein using AAV8-RS1 delivery improved the retinal structure. This Rs1h -/y rat model provides a further tool to explore underlying mechanisms of XLRS pathology and to evaluate therapeutic intervention for the XLRS condition.
      (© 2021. The Author(s).)
    • References:
      Prog Retin Eye Res. 2008 Jan;27(1):1-44. (PMID: 18042420)
      Vision Res. 1989;29(3):263-70. (PMID: 2788958)
      Invest Ophthalmol Vis Sci. 2004 Sep;45(9):3302-12. (PMID: 15326155)
      Sci Transl Med. 2013 Jun 12;5(189):189ra76. (PMID: 23761039)
      Vision Res. 1985;25(1):21-31. (PMID: 3984214)
      Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT277-87. (PMID: 27409484)
      Vision Res. 1979;19(5):569-88. (PMID: 483586)
      Front Genet. 2018 Oct 04;9:431. (PMID: 30337940)
      J Clin Invest. 2015 Jul 1;125(7):2891-903. (PMID: 26098217)
      Doc Ophthalmol. 1984 May 30;57(3):279-96. (PMID: 6468246)
      Oncol Lett. 2017 Mar;13(3):1944-1948. (PMID: 28454348)
      Mol Ther Methods Clin Dev. 2016 Mar 16;5:16011. (PMID: 27626041)
      PLoS One. 2017 Mar 21;12(3):e0173980. (PMID: 28323884)
      J Cell Sci. 2016 Feb 1;129(3):461-7. (PMID: 26787741)
      Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6222-7. (PMID: 11983912)
      Gene Ther. 2019 Sep;26(9):386-398. (PMID: 31308478)
      Mol Ther. 2008 Jun;16(6):1010-7. (PMID: 18388913)
      Front Mol Neurosci. 2018 Jan 12;10:453. (PMID: 29379415)
      Mamm Genome. 2017 Aug;28(7-8):291-301. (PMID: 28677007)
      Eye (Lond). 2014 Nov;28(11):1364-9. (PMID: 25168411)
      Biotechnol Bioeng. 2015 May;112(5):1060-4. (PMID: 25362885)
      Cell Biosci. 2016 Mar 31;6:22. (PMID: 27042291)
      Vis Neurosci. 1999 Mar-Apr;16(2):391-8. (PMID: 10367972)
      Methods. 2014 Sep;69(2):128-36. (PMID: 24576617)
      Indian J Ophthalmol. 2016 Jul;64(7):513-7. (PMID: 27609164)
      Hum Gene Ther. 2016 May;27(5):376-89. (PMID: 27036983)
      Semin Cell Dev Biol. 2018 Mar;75:78-87. (PMID: 28866327)
      Dis Model Mech. 2009 May-Jun;2(5-6):206-10. (PMID: 19407324)
      Mol Ther. 2018 Sep 5;26(9):2282-2294. (PMID: 30196853)
      Cell Discov. 2015;1:. (PMID: 26491543)
      Cardiovasc Res. 2010 Jan 15;85(2):330-8. (PMID: 19617224)
      J Med Genet. 2007 Apr;44(4):225-32. (PMID: 17172462)
      Vision Res. 2006 Oct;46(22):3845-52. (PMID: 16884758)
      Gene Ther. 2014 Jun;21(6):585-92. (PMID: 24694538)
      Hum Mol Genet. 2019 Sep 15;28(18):3072-3090. (PMID: 31174210)
      Invest Ophthalmol Vis Sci. 2000 Sep;41(10):3200-9. (PMID: 10967084)
      Crit Rev Eukaryot Gene Expr. 2020;30(3):239-243. (PMID: 32749110)
      Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3837-45. (PMID: 17652759)
      Mol Vis. 2008 Aug 25;14:1549-58. (PMID: 18728755)
      Invest Ophthalmol Vis Sci. 2011 Nov 29;52(12):9250-6. (PMID: 22039241)
      Cell. 2017 Apr 20;169(3):559. (PMID: 28431253)
      Surv Ophthalmol. 2004 Mar-Apr;49(2):214-30. (PMID: 14998693)
      Genetika. 2009 Feb;45(2):230-8. (PMID: 19334618)
      Invest Ophthalmol Vis Sci. 2001 Mar;42(3):816-25. (PMID: 11222545)
      Life Sci. 2019 Sep 1;232:116636. (PMID: 31295471)
      Mol Ther. 2005 Oct;12(4):644-51. (PMID: 16027044)
      Invest Ophthalmol Vis Sci. 2008 Jan;49(1):442-52. (PMID: 18172124)
      Invest Ophthalmol Vis Sci. 2004 Sep;45(9):3279-85. (PMID: 15326152)
    • Grant Information:
      Z99 EY999999 United States ImNIH Intramural NIH HHS
    • Accession Number:
      0 (Cell Adhesion Molecules)
      0 (Eye Proteins)
      0 (RS1 protein, human)
    • Publication Date:
      Date Created: 20210922 Date Completed: 20220819 Latest Revision: 20220912
    • Publication Date:
      20240829
    • Accession Number:
      PMC8938309
    • Accession Number:
      10.1038/s41434-021-00290-6
    • Accession Number:
      34548657