Statistical shape analysis of gravid uteri throughout pregnancy by a ray description technique.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 7704869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1741-0444 (Electronic) Linking ISSN: 01400118 NLM ISO Abbreviation: Med Biol Eng Comput Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Springer
      Original Publication: Stevenage, Eng., Peregrinus.
    • Subject Terms:
    • Abstract:
      In order to study the anatomical variability of the uterus induced by pregnancy, a parametrization of gravid uterine geometry based on principal component analysis (PCA) is proposed. Corresponding meshes used for PCA are created by a ray description technique applied to a reference mesh. A smoothed voxel-based methodology is applied to determine the reference mesh from a database of 11 real shapes produced by the FEMONUM project. The ray-based correspondence technique is compared to two existing methods (He, Giessen) as well as a proposed mixed method. Principal component analysis results are based on a database of 11 existing shapes. Results of the parametrization show that 90% of the total variance of the database can be represented with four new shape parameters and that a wide spectrum of shapes can be generated. Graphical Abstract Proposed correspondence technique compared to existing methods.
      (© 2021. International Federation for Medical and Biological Engineering.)
    • References:
      DAZ 3D Models and 3D Software by Daz 3D. https://www.daz3d.com/.
      Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483. https://doi.org/10.1145/235815.235821. (PMID: 10.1145/235815.235821)
      Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24. https://doi.org/10.1109/34.993558.
      Bibin L, Anquez J, de la Plata Alcalde JP, Boubekeur T, Angelini ED, Bloch I (2010) Whole-body pregnant woman modeling by digital geometry processing with detailed uterofetal unit based on medical images. IEEE Trans Biomed Eng 57(10):2346–2358. 2010. (PMID: 10.1109/TBME.2010.2053367)
      Bookstein F (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585. https://doi.org/10.1109/34.24792. (PMID: 10.1109/34.24792)
      Brechbühler C, Gerig G, Kübler O (1995) Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Underst 61(2):154–170. https://doi.org/10.1006/cviu.1995.1013 . http://www.sciencedirect.com/science/article/pii/S1077314285710132. (PMID: 10.1006/cviu.1995.1013)
      Bryan R, Mohan PS, Hopkins A, Galloway F, Taylor M, Nair PB (2010) Statistical modelling of the whole human femur incorporating geometric and material properties. Med Eng Phys 32(1):57–65. https://doi.org/10.1016/j.medengphy.2009.10.008. (PMID: 10.1016/j.medengphy.2009.10.008)
      Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput-Aid Des 10(6):350–355. https://doi.org/10.1016/0010-4485(78)90110-0 . http://www.sciencedirect.com/science/article/pii/0010448578901100. (PMID: 10.1016/0010-4485(78)90110-0)
      Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):10.
      Cootes T, Taylor C (1995) Combining point distribution models with shape models based on finite element analysis. Image Vis Comput 13 (5):403–409. https://doi.org/10.1016/0262-8856(95)99727-I . http://www.sciencedirect.com/science/article/pii/026288569599727I. (PMID: 10.1016/0262-8856(95)99727-I)
      Dahdouh S, Varsier N, Serrurier A, De la Plata JP, Anquez J, Angelini ED, Wiart J, Bloch I (2014) A comprehensive tool for image-based generation of fetus and pregnant women mesh models for numerical dosimetry studies. Phys Med Biol 59(16):4583–4602. https://doi.org/10.1088/0031-9155/59/16/4583. (PMID: 10.1088/0031-9155/59/16/4583)
      Dalal P, Munsell BC, Wang S, Tang J, Oliver K, Ninomiya H, Zhou X, Fujita H (2007) A fast 3D correspondence method for statistical shape modeling. In: 2007 IEEE Conference on computer vision and pattern recognition. pp 1–8. https://doi.org/10.1109/CVPR.2007.383143.
      Davies R, Twining C, Cootes T, Waterton J, Taylor C (2002) A minimum description length approach to statistical shape modelling. IEEE Trans Med Imaging 21:525–37. https://doi.org/10.1109/TMI.2002.1009388. (PMID: 10.1109/TMI.2002.1009388)
      Fitzgibbon A (2002) Robust registration of 2D and 3D point sets. Image Vis Comput 21:1145–1153. https://doi.org/10.1016/j.imavis.2003.09.004. (PMID: 10.1016/j.imavis.2003.09.004)
      Fleute M, Lavallée S. (1998) Building a complete surface model from sparse data using statistical shape models: Application to computer assisted knee surgery. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention — MICCAI’98, Lecture notes in computer science. Springer, Berlin, pp 879–887. https://doi.org/10.1007/BFb0056276.
      George PL (1996) Automatic mesh generation and finite element computation. In: Handbook of numerical analysis, finite element methods (part 2), numerical methods for solids (part 2), vol 4. Elsevier, pp 69–190. https://doi.org/10.1016/S1570-8659(96)80003-2 . http://www.sciencedirect.com/science/article/pii/S1570865996800032.
      van de Giessen M, Foumani M, Streekstra GJ, Strackee SD, Maas M, van Vliet LJ, Grimbergen KA, Vos FM (2010) Statistical descriptions of scaphoid and lunate bone shapes. J Biomech 43(8):1463–1469. https://doi.org/10.1016/j.jbiomech.2010.02.006. (PMID: 10.1016/j.jbiomech.2010.02.006)
      van de Giessen M, Smitsman N, Strackee SD, van Vliet LJ, Grimbergen KA, Streekstra GJ, Vos FM (2009) A statistical description of the articulating ulna surface for prosthesis design. In: Proceedings of the sixth IEEE international conference on symposium on biomedical imaging: from nano to macro, Boston, Massachusetts, USA, pp 678–681.
      Guennebaud G, Germann M, Gross M (2008) Dynamic sampling and rendering of algebraic point set surfaces. Comput Graph Forum 27(2):653–662. https://doi.org/10.1111/j.1467-8659.2008.01163.x. (PMID: 10.1111/j.1467-8659.2008.01163.x)
      Guennebaud G, Gross M (2007) Algebraic point set surfaces. ACM Trans Graph 26(3):23–9. https://hal.inria.fr/inria-00354998. (PMID: 10.1145/1276377.1276406)
      Harders M, Székely G. (2007) Using statistical shape analysis for the determination of uterine deformation states during hydrometra. Med Image Comput Comput Assist Interv 10(Pt 2):858–865. https://doi.org/10.1007/978-3-540-75759-7_104. (PMID: 18044649)
      He Q, Christ SE, Karsch K, Moffitt AJ, Peck D, Duan Y (2009) Detecting 3D Corpus Callosum abnormalities in phenylketonuria. Int J Comput Biol Drug Des 2(4):289–301. https://doi.org/10.1504/IJCBDD.2009.030762. (PMID: 10.1504/IJCBDD.2009.030762)
      He Q, Duan Y, Karsch K, Miles J (2010) Detecting corpus callosum abnormalities in autism based on anatomical landmarks. Psychiatry Res 183 (2):126–132. https://doi.org/10.1016/j.pscychresns.2010.05.006 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910223/. (PMID: 10.1016/j.pscychresns.2010.05.006)
      Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Dellino G, Meloni C (eds) Uncertainty management in simulation-optimization of complex systems: algorithms and applications, operations research/computer science interfaces series. Springer, Boston, pp 101–122. https://doi.org/10.1007/978-1-4899-7547-8_5.
      Jolliffe IT (1986) Principal component analysis. Springer Series in Statistics. Springer, New York. https://doi.org/10.1007/978-1-4757-1904-8 . https://www.springer.com/gp/book/9781475719048. (PMID: 10.1007/978-1-4757-1904-8)
      Lu YC, Kemper AR, Gayzik S, Untaroiu C, Beillas P (2013) Statistical modeling of human liver incorporating the variations in shape, size, and material properties. Stapp Car Crash J 57:285–311. (PMID: 24435736)
      Lu YC, Untaroiu C (2014) A statistical geometrical description of the human liver for probabilistic occupant models. J Biomech 47. https://doi.org/10.1016/j.jbiomech.2014.09.031.
      Lu YC, Untaroiu C (2013) Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models. Comput Methods Programs Biomed 111(3):613–628. https://doi.org/10.1016/j.cmpb.2013.05.017. (PMID: 10.1016/j.cmpb.2013.05.017)
      Marque C, Terrien J, Rihana S, Germain G (2007) Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC Pregnancy Childbirth 7(1):S5. https://doi.org/10.1186/1471-2393-7-S1-S5. (PMID: 10.1186/1471-2393-7-S1-S5)
      Spiegel M, Stephens L (2008) Chapitre 7: The binomial, normal, and poisson distributions. In: Theory and problems of statistics, Schaum’s Outlines. 4th edn.
      Muszynski C (2019) Évaluation de l’électrohystérogramme pour la surveillance et le diagnostic des femmes à risque d’accouchement prématuré. PhD Thesis, Université de Technologie de Compiègne. https://tel.archives-ouvertes.fr/tel-02349356.
      Mwaniki MK, Atieno M, Lawn JE, Newton CRJC (2012) Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet (London, England) 379 (9814):445–452. https://doi.org/10.1016/S0140-6736(11)61577-8. (PMID: 10.1016/S0140-6736(11)61577-8)
      Norman JE, Shennan AH (2013) Prevention of preterm birth–why can’t we do any better? Lancet (London, England) 381 (9862):184–185. https://doi.org/10.1016/S0140-6736(12)61956-4. (PMID: 10.1016/S0140-6736(12)61956-4)
      Purisch SE, Gyamfi-Bannerman C (2017) Epidemiology of preterm birth. Seminars Perinatol 41(7):387–391. https://doi.org/10.1053/j.semperi.2017.07.009 . http://www.sciencedirect.com/science/article/pii/S0146000517300812. (PMID: 10.1053/j.semperi.2017.07.009)
      Rajamani K, Hug J, Nolte LP, Styner M (2004) Bone Morphing with statistical shape models for enhanced. In: Proceedings of SPIE - the international society for optical engineering. https://doi.org/10.1117/12.535000.
      Rigaud B, Simon A, Gobeli M, Leseur J, Duverge L, Williaume D, Castelli J, Lafond C, Acosta O, Haigron P, Crevoisier R (2018) Statistical shape model to generate a planning library for cervical adaptive radiotherapy. IEEE Trans Med Imag PP:1–1. https://doi.org/10.1109/TMI.2018.2865547.
      Rios R, De Crevoisier R, Ospina JD, Commandeur F, Lafond C, Simon A, Haigron P, Espinosa J, Acosta O (2017) Population model of bladder motion and deformation based on dominant eigenmodes and mixed-effects models in prostate cancer radiotherapy. Med Image Anal 38:133–149. https://doi.org/10.1016/j.media.2017.03.001 . https://www.sciencedirect.com/science/article/pii/S1361841517300373. (PMID: 10.1016/j.media.2017.03.001)
      Rychlik M, Stankiewicz W, Morzyński M (2008) Applications of 3D PCA method for extraction of mean shape and geometrical features of biological objects set. Math Model Anal 13(3):413–420. https://doi.org/10.3846/1392-6292.2008.13.413-420. (PMID: 10.3846/1392-6292.2008.13.413-420)
      Shen L, Cong S, Inlow M (2017) Chapter 13 - statistical shape analysis for brain structures. In: Zheng G, Li S, Székely G (eds) Statistical shape and deformation analysis. Academic Press, pp 351–378. https://doi.org/10.1016/B978-0-12-810493-4.00016-X . http://www.sciencedirect.com/science/article/pii/B978012810493400016X.
      Sierra R, Zsemlye G, Székely G., Bajka M (2006) Generation of variable anatomical models for surgical training simulators. Med Image Anal 10(2):275–285. https://doi.org/10.1016/j.media.2005.11.003 . http://www.sciencedirect.com/science/article/pii/S1361841505001118. (PMID: 10.1016/j.media.2005.11.003)
      Styner MA, Rajamani KT, Nolte LP, Zsemlye G, Székely G., Taylor CJ, Davies RH (2003) Evaluation of 3D correspondence methods for model building. In: Taylor C, Noble JA (eds) Information processing in medical imaging, lecture notes in computer science. Springer, Berlin, pp 63–75. https://doi.org/10.1007/978-3-540-45087-0_6.
      Taubin G (1995) Curve and surface smoothing without shrinkage. In: Proceedings of IEEE International conference on computer vision. pp 852–857. https://doi.org/10.1109/ICCV.1995.466848.
      Terrien J, Steingrimsdottir T, Marque C, Karlsson B (2010) Synchronization between EMG at different uterine locations investigated using time-frequency ridge reconstruction: comparison of pregnancy and labor contractions. EURASIP J Adv Signal Process 2010(1):242493. https://doi.org/10.1155/2010/242493 . https://asp-eurasipjournals.springeropen.com/articles/10.1155/2010/242493. (PMID: 10.1155/2010/242493)
      Yates KM, Lu YC, Untaroiu C (2016) Statistical shape analysis of the human spleen geometry for probabilistic occupant models. J Biomech 49(9):1540–1546. https://doi.org/10.1016/j.jbiomech.2016.03.027. (PMID: 10.1016/j.jbiomech.2016.03.027)
      Yates KM, Untaroiu C (2018) Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing. J Biomech 74:50–56. https://doi.org/10.1016/j.jbiomech.2018.04.016. (PMID: 10.1016/j.jbiomech.2018.04.016)
      Yochum M, Laforêt J, Marque C (2016) An electro-mechanical multiscale model of uterine pregnancy contraction. Comput Biol Med 77:182–194. https://doi.org/10.1016/j.compbiomed.2016.08.001 . http://www.sciencedirect.com/science/article/pii/S0010482516301925. (PMID: 10.1016/j.compbiomed.2016.08.001)
      Yochum M, Laforêt J, Marque C (2018) Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction. Comput Biol Med 93:17–30. https://doi.org/10.1016/j.compbiomed.2017.12.001 . http://www.sciencedirect.com/science/article/pii/S0010482517303906. (PMID: 10.1016/j.compbiomed.2017.12.001)
      Young RC (2015) Synchronization of regional contractions of human labor; direct effects of region size and tissue excitability. J Biomech 48(9):1614–1619. https://doi.org/10.1016/j.jbiomech.2015.02.002 . http://www.sciencedirect.com/science/article/pii/S0021929015000688. (PMID: 10.1016/j.jbiomech.2015.02.002)
      Young RC, Goloman G (2011) Mechanotransduction in rat myometrium: coordination of contractions of electrically and chemically isolated tissues. Reprod Sci (Thousand Oaks Calif.) 18(1):64–69. https://doi.org/10.1177/1933719110379637. (PMID: 10.1177/1933719110379637)
    • Contributed Indexing:
      Keywords: Correspondence search; Gravid uteri; Shape analysis; Voxel techniques
    • Publication Date:
      Date Created: 20210910 Date Completed: 20210920 Latest Revision: 20210920
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s11517-021-02402-1
    • Accession Number:
      34505224