Consumption of gossypol increases fatty acid-amino acid conjugates in the cotton pests Helicoverpa armigera and Heliothis virescens.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 8501752 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-6327 (Electronic) Linking ISSN: 07394462 NLM ISO Abbreviation: Arch Insect Biochem Physiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley
      Original Publication: New York : Alan R. Liss, c1983-
    • Subject Terms:
    • Abstract:
      Gossypol is a toxic sesquiterpene dimer produced by cotton plants which deters herbivory by insects and vertebrates. Two highly reactive aldehyde groups contribute to gossypol toxicity by cross-linking herbivore proteins. We identified another consequence of consuming gossypol in two insect pests of cotton: increased amounts of fatty acid-amino acid conjugates (FACs). Eight different FACs in the feces of larval Helicoverpa armigera and Heliothis virescens increased when larvae consumed artificial diet containing gossypol, but not a gossypol derivative lacking free aldehyde groups (SB-gossypol). FACs are produced by joining plant-derived fatty acids with amino acids of insect origin in the larval midgut tissue by an unknown conjugase, and translocated into the gut lumen by an unknown transporter. FACs are hydrolyzed back into fatty acids and amino acids by an aminoacylase (L-ACY-1) in the gut lumen. The equilibrium level of FACs in the lumen is determined by a balance between conjugation and hydrolysis, which may differ among species. When heterologously expressed, L-ACY-1 of H. armigera but not H. virescens was inhibited by gossypol; consistent with the excretion of more FACs in the feces by H. armigera. FACs are known to benefit the plant host by inducing anti-herbivore defensive responses, and have been hypothesized to benefit the herbivore by acting as a surfactant and increasing nitrogen uptake efficiency. Thus in addition to its direct toxic effects, gossypol may negatively impact insect nitrogen uptake efficiency and amplify the signal used by the plant to elicit release of volatile compounds that attract parasitoids.
      (© 2021 The Authors. Archives of Insect Biochemistry and Physiology published by Wiley Periodicals LLC.)
    • References:
      Alborn, H., Turlings, T., Jones, T., Stenhagen, G., Loughrin, J., & Tumlinson, J. (1997). An elicitor of plant volatiles from beet armyworm oral secretion. Science, 276, 945-949.
      Barbehenn, R. V. (2001). Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Archives of Insect Biochemistry and Physiology, 47, 86-99.
      Barthel, A., Vogel, H., Pauchet, Y., Pauls, G., Kunert, G., Groot, A. T., Boland, W., Heckel, D. G., & Heidel-Fischer, H. M. (2016). Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications, 7, art. 12530.
      Celorio-Mancera, M. D., Ahn, S. -J., Vogel, H., & Heckel, D. G. (2011). Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera. BMC Genomics, 12, 575.
      Cheng, Q., Gu, S. H., Liu, Z. W., Wang, C. Z., & Li, X. C. (2017). Expressional divergence of the fatty acid-amino acid conjugate-hydrolyzing aminoacylase 1 (LACY-1) in Helicoverpa armigera and Helicoverpa assulta. Scientific Reports, 7, art. 8721.
      Collatz, K. -G., & Mommsen, T. (1974). Die Struktur der emulgierenden Substanzen verschiedener Invertebraten. Journal of Comparative Physiology, 94, 339-352.
      Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3, 408-414.
      Halitschke, R., Schittko, U., Pohnert, G., Boland, W., & Baldwin, I. T. (2001). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiology, 125, 711-717.
      Hettenhausen, C., Heinrich, M., Baldwin, I. T., & Wu, J. Q. (2014). Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. BMC Plant Biology, 14, art. 326.
      Kessler, A., & Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141-2144.
      Koch, T., Krumm, T., Jung, V., Engelberth, J., & Boland, W. (1999). Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiology, 121, (1), 153. -162. http://doi.org/10.1104/pp.121.1.153.
      Krempl, C., Heidel-Fischer, H. M., Jimenez-Aleman, G. H., Reichelt, M., Menezes, R. C., Boland, W., Vogel, H., Heckel, D. G., & Joussen, N. (2016). Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 78, 69-77.
      Krempl, C., Sporer, T., Reichelt, M., Ahn, S. J., Heidel-Fischer, H., Vogel, H., Heckel, D. G., & Joussen, N. (2016). Potential detoxification of gossypol by UDP-glycosyltransferases in the two heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 71, 49-57.
      Kuhns, E. H., Seidl-Adams, I., & Tumlinson, J. H. (2012a). Heliothine caterpillars differ in abundance of a gut lumen aminoacylase (L-ACY-1)-Suggesting a relationship between host preference and fatty acid amino acid conjugate metabolism. Journal of Insect Physiology, 58, 408-412.
      Kuhns, E. H., Seidl-Adams, I., & Tumlinson, J. H. (2012b). A lepidopteran aminoacylase (L-ACY-1) in Heliothis virescens (Lepidoptera: Noctuidae) gut lumen hydrolyzes fatty acid-amino acid conjugates, elicitors of plant defense. Insect Biochemistry and Molecular Biology, 42, 32-40.
      Lait, C. G., Alborn, H. T., Teal, P. E., & Tumlinson, J. H. (2003). Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proceedings of the National Academy of Sciences of the United States of America, 100, 7027-7032.
      De Moraes, C., Lewis, W., Paré, P., Alborn, H., & Tumlinson, J. (1998). Herbivore-infested plants selectively attract parasitoids. Nature, 393, 570-573.
      De Moraes, C. M., & Mescher, M. C. (2004). Biochemical crypsis in the avoidance of natural enemies by an insect herbivore. Proceedings of the National Academy of Sciencesof the United States of America, 101, 8993-8997.
      Mori, N., Alborn, H. T., Teal, P. E., & Tumlinson, J. H. (2001). Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. Journal of Insect Physiology, 47, 749-757.
      Mori, N., Yoshinaga, N., Sawada, Y., Fukui, M., Shimoda, M., Fujisaki, K., Nishida, R., & Kuwahara, Y. (2003). Identification of volicitin-related compounds from the regurgitant of lepidopteran caterpillars. Bioscience, Biotechnology, and Biochemistry, 67, 1168-1171.
      Paré, P., Alborn, H., & Tumlinson, J. (1998). Concerted biosynthesis of an insect elicitor of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 95, 13971-13975.
      Paré, P. W., & Tumlinson, J. H. (1997). De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiology, 114, 1161-1167.
      Peiffer, M., & Felton, G. W. (2009). Do caterpillars secrete "oral secretions"? Journal of Chemical Ecology, 35, 326-335.
      Ping, L. Y., Büchler, R., Mithöfer, A., Svatos, A., Spiteller, D., Dettner, K., Gmeiner, S., Piel, J., Schlott, B., & Boland, W. (2007). A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids. Environmental Microbiology, 9, 1572-1583.
      Pogue, M. G. (2013). Revised status of Chloridea Duncan and (Westwood), 1841, for the Heliothis virescens species group (Lepidoptera: Noctuidae: Heliothinae) based on morphology and three genes. Systematic Entomology, 38, 523-542.
      Pohnert, G., Jung, V., Haukioja, E., Lempa, K., & Boland, W. (1999). New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron Letters, 55, 11275-11280.
      Spiteller, D., Dettner, K., & Boland, W. (2000). Gut bacteria may be involved in interactions between plants, herbivores and their predators: Microbial biosynthesis of N-acylglutamine surfactants as elicitors of plant volatiles. Biological Chemistry, 381, 755-762.
      Truitt, C. L., & Paré, P. W. (2004). In situ translocation of volicitin by beet armyworm larvae to maize and systemic immobility of the herbivore elicitor in planta. Planta, 218, 999-1007.
      Tumlinson, J. H., & Lait, C. G. (2005). Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Archives of Insect Biochemistry and Physiology, 58, 54-68.
      Turlings, T. C., McCall, P. J., Alborn, H. T., & Tumlinson, J. H. (1993). An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. Journal of Chemical Ecology, 19, 411-425.
      Turlings, T. C., Tumlinson, J. H., & Lewis, W. J. (1990). Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science, 250, 1251-1253.
      Vadassery, J., Reichelt, M., & Mithöfer, A. (2012). Direct Proof of ingested food Regurgitation by Spodoptera littoralis caterpillars during feeding on Arabidopsis. Journal of Chemical Ecology, 38, 865-872.
      Yoshinaga, N. (2016). Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects. Bioscience, Biotechnology, and Biochemistry, 80, 1274-1282.
      Yoshinaga, N., Aboshi, T., Abe, H., Nishida, R., Alborn, H. T., Tumlinson, J. H., & Mori, N. (2008). Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proceedings of the National Academy of Sciences of the United States of America, 105, 18058-18063.
      Yoshinaga, N., Alborn, H. T., Nakanishi, T., Suckling, D. M., Nishida, R., Tumlinson, J. H., & Mori, N. (2010). Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars. Journal of Chemical Ecology, 36, 319-325.
      Yoshinaga, N., Morigaki, N., Matsuda, F., Nishida, R., & Mori, N. (2005). In vitro biosynthesis of volicitin in Spodoptera litura. Insect Biochemistry and Molecular Biology, 35, 175-184.
    • Grant Information:
      JO 855/1-1 Deutsche Forschungsgemeinschaft; Max-Planck-Gesellschaft
    • Contributed Indexing:
      Keywords: Chloridea virescens; amidase; aminoacylase; elicitor; fatty acid amide; gossypol
    • Accession Number:
      0 (Amino Acids)
      0 (Fatty Acids)
      0 (Insect Proteins)
      EC 3.5.- (Amidohydrolases)
      EC 3.5.1.14 (aminoacylase I)
      KAV15B369O (Gossypol)
    • Publication Date:
      Date Created: 20210907 Date Completed: 20211019 Latest Revision: 20211019
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/arch.21843
    • Accession Number:
      34490676