Repair of APOBEC3G-Mutated Retroviral DNA In Vivo Is Facilitated by the Host Enzyme Uracil DNA Glycosylase 2.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Salas-Briceno K;Salas-Briceno K; Ross SR; Ross SR
  • Source:
    Journal of virology [J Virol] 2021 Oct 27; Vol. 95 (22), pp. e0124421. Date of Electronic Publication: 2021 Sep 01.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: American Society For Microbiology Country of Publication: United States NLM ID: 0113724 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5514 (Electronic) Linking ISSN: 0022538X NLM ISO Abbreviation: J Virol Subsets: MEDLINE
    • Publication Information:
      Publication: Washington Dc : American Society For Microbiology
      Original Publication: Baltimore, American Society for Microbiology.
    • Subject Terms:
    • Abstract:
      Apolipoprotein B mRNA editing enzyme catalytic subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative-strand DNA during reverse transcription, leading to G-to-A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an Ung and mouse Apobec3 knockout background (UNG-/-APO-/-), and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared with A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. IMPORTANCE While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo . Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase ( Ung ) gene and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection-first, in unintegrated nuclear viral reverse-transcribed DNA, resulting in its degradation; and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.
    • References:
      J Biol Chem. 2004 Aug 6;279(32):33177-84. (PMID: 15159405)
      J Virol. 2006 Feb;80(3):1067-76. (PMID: 16414984)
      J Virol. 2014 Apr;88(7):3850-60. (PMID: 24453360)
      Biochemistry. 1995 Jan 10;34(1):128-38. (PMID: 7819187)
      J Radiat Res. 2009 Jan;50(1):19-26. (PMID: 18987436)
      PLoS One. 2020 Jul 14;15(7):e0235012. (PMID: 32663205)
      J Virol. 2007 May;81(10):5000-13. (PMID: 17344295)
      BMC Res Notes. 2010 Nov 10;3:294. (PMID: 21067583)
      J Biol Chem. 2007 Apr 20;282(16):11667-75. (PMID: 17272283)
      Retrovirology. 2016 Jun 30;13(1):45. (PMID: 27363431)
      DNA Repair (Amst). 2013 Aug;12(8):620-36. (PMID: 23684800)
      Nature. 2002 Aug 8;418(6898):646-50. (PMID: 12167863)
      J Virol. 2006 Jan;80(2):875-82. (PMID: 16378989)
      Proc Natl Acad Sci U S A. 2021 Mar 9;118(10):. (PMID: 33649225)
      J Virol. 2013 May;87(9):4808-17. (PMID: 23449789)
      J Biol Chem. 2004 Aug 20;279(34):35822-8. (PMID: 15210704)
      Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
      J Virol. 2009 Jan;83(2):494-7. (PMID: 18987154)
      J Virol. 2008 Jul;82(13):6566-75. (PMID: 18448535)
      PLoS Pathog. 2015 Jan 15;11(1):e1004609. (PMID: 25590131)
      Proc Natl Acad Sci U S A. 2013 May 28;110(22):9078-83. (PMID: 23671100)
      EMBO J. 2004 Jun 16;23(12):2451-8. (PMID: 15152192)
      Mol Aspects Med. 2007 Jun-Aug;28(3-4):276-306. (PMID: 17590428)
      Nat Commun. 2020 Jul 14;11(1):3505. (PMID: 32665593)
      J Mol Biol. 1967 Jun 14;26(2):365-9. (PMID: 4291934)
      J Virol. 2010 Aug;84(15):7473-83. (PMID: 20484494)
      PLoS Pathog. 2009 Mar;5(3):e1000330. (PMID: 19266078)
      J Virol. 2018 May 14;92(11):. (PMID: 29593034)
      J Immunol. 2015 Nov 15;195(10):4565-70. (PMID: 26546688)
      J Virol. 2008 May;82(9):4660-4. (PMID: 18272574)
      Retrovirology. 2008 Jun 24;5:51. (PMID: 18577210)
      Annu Rev Immunol. 2008;26:481-511. (PMID: 18304001)
      Proc Natl Acad Sci U S A. 2011 May 31;108(22):9244-9. (PMID: 21576478)
      DNA Repair (Amst). 2008 Apr 2;7(4):605-16. (PMID: 18295553)
      PLoS One. 2012;7(5):e38190. (PMID: 22666481)
      Proc Natl Acad Sci U S A. 1983 Oct;80(19):5965-9. (PMID: 6310608)
      Curr Biol. 2004 Aug 10;14(15):1392-6. (PMID: 15296758)
      Cell Rep. 2020 Sep 29;32(13):108201. (PMID: 32997983)
      J Virol. 2004 Jan;78(1):473-81. (PMID: 14671127)
      Annu Rev Genet. 2012;46:677-700. (PMID: 23145935)
      Curr Biol. 2004 Aug 10;14(15):1385-91. (PMID: 15296757)
      Nat Microbiol. 2020 Sep;5(9):1088-1095. (PMID: 32483230)
      Oncogene. 2003 Aug 21;22(35):5381-6. (PMID: 12934097)
      Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):E448-57. (PMID: 23341616)
      Viruses. 2013 Oct 07;5(10):2483-511. (PMID: 24103892)
      J Biol Chem. 2007 Jan 26;282(4):2587-95. (PMID: 17121840)
      J Virol. 2004 Jun;78(11):6073-6. (PMID: 15141007)
      Mamm Genome. 2002 Sep;13(9):510-4. (PMID: 12370781)
      PLoS Pathog. 2014 May 22;10(5):e1004145. (PMID: 24851906)
      Nature. 2007 Feb 22;445(7130):927-30. (PMID: 17259974)
    • Grant Information:
      R01 AI085015 United States AI NIAID NIH HHS; UL1 TR002003 United States TR NCATS NIH HHS; R01AI 085015 HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
    • Contributed Indexing:
      Keywords: APOBEC3; base-excision repair; murine retrovirus; uracil DNA glycosylase
    • Accession Number:
      0 (DNA, Viral)
      EC 3.2.2.- (Uracil-DNA Glycosidase)
      EC 3.5.4.5 (APOBEC-3G Deaminase)
      EC 3.5.4.5 (APOBEC3G protein, mouse)
    • Publication Date:
      Date Created: 20210901 Date Completed: 20211224 Latest Revision: 20220429
    • Publication Date:
      20240829
    • Accession Number:
      PMC8549519
    • Accession Number:
      10.1128/JVI.01244-21
    • Accession Number:
      34468176