Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Clifton, NJ : Humana Press, c1987-
    • Subject Terms:
    • Abstract:
      Rho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.
      (© 2021. The Author(s).)
    • References:
      Zamboni V, Jones R, Umbach A, et al. (2018) Rho gtpases in intellectual disability: from genetics to therapeutic opportunities. Int J Mol Sci. https://doi.org/10.3390/ijms19061821.
      Sit S-T, Manser E (2011) Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 124:679–683. https://doi.org/10.1242/jcs.064964. (PMID: 10.1242/jcs.06496421321325)
      Ba W, Nadif Kasri N (2017) RhoGTPases at the synapse: an embarrassment of choice. Small GTPases 8:106–113. https://doi.org/10.1080/21541248.2016.1206352. (PMID: 10.1080/21541248.2016.120635227492682)
      Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179. https://doi.org/10.1016/s0092-8674(04)00003-0. (PMID: 10.1016/s0092-8674(04)00003-014744429)
      Guilluy C, Garcia-Mata R, Burridge K (2011) Rho protein crosstalk: another social network? Trends Cell Biol 21:718–726. https://doi.org/10.1016/j.tcb.2011.08.002. (PMID: 10.1016/j.tcb.2011.08.002219249083221770)
      Sells MA, Knaus UG, Bagrodia S et al (1997) Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7:202–210. https://doi.org/10.1016/s0960-9822(97)70091-5. (PMID: 10.1016/s0960-9822(97)70091-59395435)
      Mierke CT, Puder S, Aermes C et al (2020) Effect of PAK inhibition on cell mechanics depends on rac1. Front Cell Dev Biol 8:13. https://doi.org/10.3389/fcell.2020.00013. (PMID: 10.3389/fcell.2020.00013320477506997127)
      Chen B, Chou H-T, Brautigam CA, et al. (2017) Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. Elife. https://doi.org/10.7554/eLife.29795.
      Tahirovic S, Hellal F, Neukirchen D et al (2010) Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 30:6930–6943. https://doi.org/10.1523/JNEUROSCI.5395-09.2010. (PMID: 10.1523/JNEUROSCI.5395-09.2010204846356632643)
      Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17:496–510. https://doi.org/10.1038/nrm.2016.67. (PMID: 10.1038/nrm.2016.6727301673)
      Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269. https://doi.org/10.1146/annurev.cellbio.21.020604.150721. (PMID: 10.1146/annurev.cellbio.21.020604.15072116212495)
      Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877. https://doi.org/10.1016/j.cell.2007.05.018. (PMID: 10.1016/j.cell.2007.05.01817540168)
      Kim IH, Wang H, Soderling SH, Yasuda R (2014) Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. Elife. https://doi.org/10.7554/eLife.02839.
      Richter M, Murtaza N, Scharrenberg R et al (2019) Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. Mol Psychiatry 24:1329–1350. https://doi.org/10.1038/s41380-018-0025-5. (PMID: 10.1038/s41380-018-0025-529467497)
      Wang X, Liu D, Wei F et al (2020) Stress-sensitive protein Rac1 and its involvement in neurodevelopmental disorders. Neural Plast 2020:8894372. https://doi.org/10.1155/2020/8894372. (PMID: 10.1155/2020/8894372332994047707960)
      Reijnders MRF, Ansor NM, Kousi M et al (2017) RAC1 missense mutations in developmental disorders with diverse phenotypes. Am J Hum Genet 101:466–477. https://doi.org/10.1016/j.ajhg.2017.08.007. (PMID: 10.1016/j.ajhg.2017.08.007288863455591022)
      Ramakers GJA, Wolfer D, Rosenberger G et al (2012) Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits. Hum Mol Genet 21:268–286. https://doi.org/10.1093/hmg/ddr457. (PMID: 10.1093/hmg/ddr45721989057)
      Aitsebaomo J, Wennerberg K, Der CJ et al (2004) p68RacGAP is a novel GTPase-activating protein that interacts with vascular endothelial zinc finger-1 and modulates endothelial cell capillary formation. J Biol Chem 279:17963–17972. https://doi.org/10.1074/jbc.M311721200. (PMID: 10.1074/jbc.M31172120014966113)
      Sanz-Moreno V, Gadea G, Ahn J et al (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135:510–523. https://doi.org/10.1016/j.cell.2008.09.043. (PMID: 10.1016/j.cell.2008.09.04318984162)
      Mori M, Saito K, Ohta Y (2014) ARHGAP22 localizes at endosomes and regulates actin cytoskeleton. PLoS ONE 9:e100271. https://doi.org/10.1371/journal.pone.0100271. (PMID: 10.1371/journal.pone.0100271249331554059726)
      Valnegri P, Montrasio C, Brambilla D et al (2011) The X-linked intellectual disability protein IL1RAPL1 regulates excitatory synapse formation by binding PTPδ and RhoGAP2. Hum Mol Genet 20:4797–4809. https://doi.org/10.1093/hmg/ddr418. (PMID: 10.1093/hmg/ddr418219264143221541)
      Sambrook J, Russell DW (2006) Detection of protein-protein interactions using the GST fusion protein pulldown technique. CSH Protoc. https://doi.org/10.1101/pdb.prot3757. (PMID: 10.1101/pdb.prot375722485923)
      Spijker S (2011) Dissection of Rodent Brain Regions. In: Li KW (ed) Neuroproteomics. Humana Press, Totowa, NJ, pp 13–26. (PMID: 10.1007/978-1-61779-111-6_2)
      Pyronneau A, He Q, Hwang J-Y et al (2017) Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal. https://doi.org/10.1126/scisignal.aan0852. (PMID: 10.1126/scisignal.aan0852291140385988355)
      Moretto E, Longatti A, Murru L et al (2019) TSPAN5 enriched microdomains provide a platform for dendritic spine maturation through neuroligin-1 clustering. Cell Rep 29:1130-1146.e8. https://doi.org/10.1016/j.celrep.2019.09.051. (PMID: 10.1016/j.celrep.2019.09.051316656296899445)
      Murru L, Vezzoli E, Longatti A et al (2017) Pharmacological modulation of AMPAR rescues intellectual disability-like phenotype in Tm4sf2-/y mice. Cereb Cortex 27:5369–5384. https://doi.org/10.1093/cercor/bhx221. (PMID: 10.1093/cercor/bhx221289686575939231)
      Sakimoto Y, Mizuno J, Kida H et al (2019) Learning promotes subfield-specific synaptic diversity in hippocampal CA1 neurons. Cereb Cortex 29:2183–2195. https://doi.org/10.1093/cercor/bhz022. (PMID: 10.1093/cercor/bhz022307968176459007)
      Folci A, Murru L, Vezzoli E et al (2016) Myosin ixa binds AMPAR and regulates synaptic structure, LTP, and cognitive function. Front Mol Neurosci 9:1. https://doi.org/10.3389/fnmol.2016.00001. (PMID: 10.3389/fnmol.2016.00001268345564719083)
      Imfeld K, Neukom S, Maccione A et al (2008) Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Trans Biomed Eng 55:2064–2073. https://doi.org/10.1109/TBME.2008.919139. (PMID: 10.1109/TBME.2008.91913918632369)
      Ferrea E, Maccione A, Medrihan L et al (2012) Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits 6:80. https://doi.org/10.3389/fncir.2012.00080. (PMID: 10.3389/fncir.2012.00080231624323496908)
      Sala M, Braida D, Lentini D et al (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69:875–882. https://doi.org/10.1016/j.biopsych.2010.12.022. (PMID: 10.1016/j.biopsych.2010.12.02221306704)
      Luong TN, Carlisle HJ, Southwell A, Patterson PH (2011) Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp. https://doi.org/10.3791/2376. (PMID: 10.3791/2376214450333197288)
      Hickey MA, Kosmalska A, Enayati J et al (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience 157:280–295. https://doi.org/10.1016/j.neuroscience.2008.08.041. (PMID: 10.1016/j.neuroscience.2008.08.04118805465)
      Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26. https://doi.org/10.1016/s0006-8993(98)01258-x. (PMID: 10.1016/s0006-8993(98)01258-x10448192)
      Pan D, Sciascia A, Vorhees CV, Williams MT (2008) Progression of multiple behavioral deficits with various ages of onset in a murine model of Hurler syndrome. Brain Res 1188:241–253. https://doi.org/10.1016/j.brainres.2007.10.036. (PMID: 10.1016/j.brainres.2007.10.03618022143)
      Kenney JW, Adoff MD, Wilkinson DS, Gould TJ (2011) The effects of acute, chronic, and withdrawal from chronic nicotine on novel and spatial object recognition in male C57BL/6J mice. Psychopharmacology 217:353–365. https://doi.org/10.1007/s00213-011-2283-7. (PMID: 10.1007/s00213-011-2283-7214876563161157)
      Pitsikas N, Rigamonti AE, Cella SG et al (2001) Effects of molsidomine on scopolamine-induced amnesia and hypermotility in the rat. Eur J Pharmacol 426:193–200. https://doi.org/10.1016/s0014-2999(01)01164-5. (PMID: 10.1016/s0014-2999(01)01164-511527544)
      Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. https://doi.org/10.1016/0165-0270(84)90007-4. (PMID: 10.1016/0165-0270(84)90007-46471907)
      Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30. https://doi.org/10.1016/0091-3057(95)02126-4. (PMID: 10.1016/0091-3057(95)02126-48728535)
      Silverman JL, Pride MC, Hayes JE et al (2015) GABAB receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology 40:2228–2239. https://doi.org/10.1038/npp.2015.66. (PMID: 10.1038/npp.2015.66257547614613612)
      Veluthakal R, Sidarala V, Kowluru A (2016) NSC23766, a known inhibitor of Tiam1-Rac1 signaling module, prevents the onset of type 1 diabetes in the NOD mouse model. Cell Physiol Biochem 39:760–767. https://doi.org/10.1159/000445666. (PMID: 10.1159/00044566627467102)
      Moyer CE, Zuo Y (2018) Cortical dendritic spine development and plasticity: insights from in vivo imaging. Curr Opin Neurobiol 53:76–82. https://doi.org/10.1016/j.conb.2018.06.002. (PMID: 10.1016/j.conb.2018.06.00229936406)
      Manser E, Leung T, Salihuddin H et al (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46. https://doi.org/10.1038/367040a0. (PMID: 10.1038/367040a08107774)
      Massari S, Perego C, Padovano V et al (2009) LIN7 mediates the recruitment of IRSp53 to tight junctions. Traffic 10:246–257. https://doi.org/10.1111/j.1600-0854.2008.00854.x. (PMID: 10.1111/j.1600-0854.2008.00854.x19054385)
      Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. J Cell Biol 189:619–629. https://doi.org/10.1083/jcb.201003008. (PMID: 10.1083/jcb.201003008204577652872912)
      Costa JF, Dines M, Lamprecht R (2020) The role of rac gtpase in dendritic spine morphogenesis and memory. Front Synaptic Neurosci 12:12. https://doi.org/10.3389/fnsyn.2020.00012. (PMID: 10.3389/fnsyn.2020.00012323628207182350)
      Govek E-E, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19:1–49. https://doi.org/10.1101/gad.1256405. (PMID: 10.1101/gad.125640515630019)
      Basu S, Lamprecht R (2018) The role of actin cytoskeleton in dendritic spines in the maintenance of long-term memory. Front Mol Neurosci 11:143. https://doi.org/10.3389/fnmol.2018.00143. (PMID: 10.3389/fnmol.2018.00143297653025938600)
      Kang HW, Kim HK, Moon BH, et al. (2017) Comprehensive review of golgi staining methods for nervous tissue. AM 47:63–69. doi: https://doi.org/10.9729/AM.2017.47.2.63.
      Kim BG, Dai H-N, McAtee M et al (2007) Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. J Neurosci Methods 162:237–243. https://doi.org/10.1016/j.jneumeth.2007.01.016. (PMID: 10.1016/j.jneumeth.2007.01.016173467992692721)
      Mahmmoud RR, Sase S, Aher YD et al (2015) Spatial and working memory is linked to spine density and mushroom spines. PLoS ONE 10:e0139739. https://doi.org/10.1371/journal.pone.0139739. (PMID: 10.1371/journal.pone.0139739264697884607435)
      Avoli M, de Curtis M (2011) GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol 95:104–132. https://doi.org/10.1016/j.pneurobio.2011.07.003. (PMID: 10.1016/j.pneurobio.2011.07.003218024884878907)
      Rutecki PA, Lebeda FJ, Johnston D (1987) 4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J Neurophysiol 57:1911–1924. (PMID: 10.1152/jn.1987.57.6.19113037040)
      D’Antuono M, Köhling R, Ricalzone S et al (2010) Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia 51:423–431. https://doi.org/10.1111/j.1528-1167.2009.02273.x. (PMID: 10.1111/j.1528-1167.2009.02273.x19694791)
      Queiroz CM, Gorter JA, Lopes da Silva FH, Wadman WJ (2009) Dynamics of evoked local field potentials in the hippocampus of epileptic rats with spontaneous seizures. J Neurophysiol 101:1588–1597. https://doi.org/10.1152/jn.90770.2008. (PMID: 10.1152/jn.90770.200818842951)
      Neves G, Cooke SF, Bliss TVP (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75. https://doi.org/10.1038/nrn2303. (PMID: 10.1038/nrn230318094707)
      Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. https://doi.org/10.1007/s10339-011-0430-z. (PMID: 10.1007/s10339-011-0430-z22160349)
      Burke SN, Wallace JL, Nematollahi S et al (2010) Pattern separation deficits may contribute to age-associated recognition impairments. Behav Neurosci 124:559–573. https://doi.org/10.1037/a0020893. (PMID: 10.1037/a0020893209396573071152)
      Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683. https://doi.org/10.1038/297681a0. (PMID: 10.1038/297681a07088155)
      Jimenez JC, Su K, Goldberg AR et al (2018) Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97:670-683.e6. https://doi.org/10.1016/j.neuron.2018.01.016. (PMID: 10.1016/j.neuron.2018.01.016293972735877404)
      Tejada-Simon MV (2015) Modulation of actin dynamics by Rac1 to target cognitive function. J Neurochem 133:767–779. https://doi.org/10.1111/jnc.13100. (PMID: 10.1111/jnc.1310025818528)
      Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86. https://doi.org/10.1042/BC20060086. (PMID: 10.1042/BC2006008617222083)
      Ma X-M, Huang J, Wang Y et al (2003) Kalirin, a multifunctional Rho guanine nucleotide exchange factor, is necessary for maintenance of hippocampal pyramidal neuron dendrites and dendritic spines. J Neurosci 23:10593–10603. (PMID: 10.1523/JNEUROSCI.23-33-10593.2003146276446740925)
      Hanley JG (2014) Actin-dependent mechanisms in AMPA receptor trafficking. Front Cell Neurosci 8:381. https://doi.org/10.3389/fncel.2014.00381. (PMID: 10.3389/fncel.2014.00381254292594228833)
      Tao-Cheng J-H (2019) Stimulation induces gradual increases in the thickness and curvature of postsynaptic density of hippocampal CA1 neurons in slice cultures. Mol Brain 12:44. https://doi.org/10.1186/s13041-019-0468-x. (PMID: 10.1186/s13041-019-0468-x310531456499976)
      Takumi Y, Ramírez-León V, Laake P et al (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624. https://doi.org/10.1038/10172. (PMID: 10.1038/1017210409387)
      Shinohara Y, Hirase H, Watanabe M et al (2008) Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc Natl Acad Sci USA 105:19498–19503. https://doi.org/10.1073/pnas.0807461105. (PMID: 10.1073/pnas.0807461105190522362593619)
      Fukazawa Y, Shigemoto R (2012) Intra-synapse-type and inter-synapse-type relationships between synaptic size and AMPAR expression. Curr Opin Neurobiol 22:446–452. https://doi.org/10.1016/j.conb.2012.01.006. (PMID: 10.1016/j.conb.2012.01.00622325858)
      Chen X, Levy JM, Hou A et al (2015) PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci USA 112:E6983–E6992. https://doi.org/10.1073/pnas.1517045112. (PMID: 10.1073/pnas.1517045112266043114687590)
      Liu Y, Du S, Lv L et al (2016) Hippocampal activation of rac1 regulates the forgetting of object recognition memory. Curr Biol 26:2351–2357. https://doi.org/10.1016/j.cub.2016.06.056. (PMID: 10.1016/j.cub.2016.06.05627593377)
      Borovac J, Bosch M, Okamoto K (2018) Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 91:122–130. https://doi.org/10.1016/j.mcn.2018.07.001. (PMID: 10.1016/j.mcn.2018.07.00130004015)
      Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51:92–104. https://doi.org/10.1016/j.neuint.2007.04.029. (PMID: 10.1016/j.neuint.2007.04.02917590478)
      Gonzalez-Sulser A, Wang J, Queenan BN et al (2012) Hippocampal neuron firing and local field potentials in the in vitro 4-aminopyridine epilepsy model. J Neurophysiol 108:2568–2580. https://doi.org/10.1152/jn.00363.2012. (PMID: 10.1152/jn.00363.2012229729613545168)
      Zapata J, Moretto E, Hannan S et al (2017) Epilepsy and intellectual disability linked protein Shrm4 interaction with GABABRs shapes inhibitory neurotransmission. Nat Commun 8:14536. https://doi.org/10.1038/ncomms14536. (PMID: 10.1038/ncomms14536282626625343488)
      Belichenko NP, Belichenko PV, Kleschevnikov AM et al (2009) The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J Neurosci 29:5938–5948. https://doi.org/10.1523/JNEUROSCI.1547-09.2009. (PMID: 10.1523/JNEUROSCI.1547-09.2009194202603849469)
      Billuart P, Bienvenu T, Ronce N et al (1998) Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392:923–926. https://doi.org/10.1038/31940. (PMID: 10.1038/319409582072)
      Zamboni V, Armentano M, Sarò G et al (2016) Disruption of ArhGAP15 results in hyperactive Rac1, affects the architecture and function of hippocampal inhibitory neurons and causes cognitive deficits. Sci Rep 6:34877. https://doi.org/10.1038/srep34877. (PMID: 10.1038/srep34877277134995054378)
      Schuster S, Rivalan M, Strauss U et al (2015) NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Mol Psychiatry 20:1120–1131. https://doi.org/10.1038/mp.2015.42. (PMID: 10.1038/mp.2015.4225869807)
      Bongmba OYN, Martinez LA, Elhardt ME et al (2011) Modulation of dendritic spines and synaptic function by Rac1: a possible link to Fragile X syndrome pathology. Brain Res 1399:79–95. https://doi.org/10.1016/j.brainres.2011.05.020. (PMID: 10.1016/j.brainres.2011.05.020216458773131096)
      Berg L, Eckardt J, Masseck OA (2019) Enhanced activity of pyramidal neurons in the infralimbic cortex drives anxiety behavior. PLoS ONE 14:e0210949. https://doi.org/10.1371/journal.pone.0210949. (PMID: 10.1371/journal.pone.0210949306770606345483)
    • Grant Information:
      GGP17283 Fondazione Telethon; GR-2016-02361366 Ministero della Salute; 227333 Regione Lombardia
    • Contributed Indexing:
      Keywords: ARHGAP22; Dendritic spines; Hippocampus; Learning and memory; Synaptic plasticity
    • Accession Number:
      0 (GTPase-Activating Proteins)
      0 (Neuropeptides)
      0 (Rac1 protein, mouse)
      3KX376GY7L (Glutamic Acid)
      EC 3.6.5.2 (rac1 GTP-Binding Protein)
    • Publication Date:
      Date Created: 20210829 Date Completed: 20220317 Latest Revision: 20240701
    • Publication Date:
      20240702
    • Accession Number:
      PMC8639580
    • Accession Number:
      10.1007/s12035-021-02502-x
    • Accession Number:
      34455539