Menu
×
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A review on the fruit components affecting uric acid level and their underlying mechanisms.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zou F;Zou F; Zhao X; Zhao X; Wang F; Wang F
- Source:
Journal of food biochemistry [J Food Biochem] 2021 Oct; Vol. 45 (10), pp. e13911. Date of Electronic Publication: 2021 Aug 23.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley Country of Publication: United States NLM ID: 7706045 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-4514 (Electronic) Linking ISSN: 01458884 NLM ISO Abbreviation: J Food Biochem Subsets: MEDLINE
- Publication Information: Publication: 2008- : Hoboken, NJ : Wiley
Original Publication: Westport, Conn. : Food & Nutrition Press - Subject Terms:
- Abstract: Uric acid (UA) is produced in the liver and excreted through the kidneys and intestines. If UA is overproduced or its excretion reduces, the concentration of UA increases, leading to hyperuricemia and gout. The high concentration of UA is also related to cardiovascular disease, hypertension, obesity, and other diseases. Fruits are healthy foods. However, fruits contain fructose and small amounts of purine, and the product of their metabolism is UA. Therefore, theoretically, eating fruits will increase the concentration of serum UA. Fruit components are numerous, and their effects on serum UA are complex. According to the current research, fructose, purine, polyphenols, vitamin C, dietary fiber, and minerals present in fruits influence serum UA concentrations. In addition to the UA synthesized by fructose and purine metabolism, the mechanisms by which other components affect the concentration of serum UA can be summarized as follows: (a) inhibiting xanthine oxidase; (b) reducing reabsorption of UA; and (c) improving the excretion of UA. In this review, we comprehensively discussed the fruit components that affect serum UA concentrations, and explained their mechanisms for the first time, which references for patients with hyperuricemia to take fruits. PRACTICAL APPLICATIONS: With the rising prevalence, hyperuricemia and gout have become public health problems that endanger our daily life. The key to the treatment of hyperuricemia is to control the level of serum UA within the normal range. Fruits are healthy foods. However, fruit components are numerous, and their effects on serum UA are complex. According to the current research, fructose, purine, polyphenols, vitamin C, dietary fiber, and minerals present in fruits influence serum UA concentrations. In this review, we comprehensively discussed the fruit components that affect serum UA concentrations. We also explained their mechanisms, which references for patients with hyperuricemia to take fruits.
(© 2021 Wiley Periodicals LLC.) - References: Ahn, H.-Y., Cho, H.-D., & Cho, Y.-S. (2020). Comparison of antioxidant effect and phenolic compounds in tropical fruits. SN Applied Sciences, 2(6), 1120. https://doi.org/10.1007/s42452-020-2927-5.
Albuquerque, M. A. C. D., Levit, R., Beres, C., Bedani, R., de Moreno de LeBlanc, A., Saad, S. M. I., & LeBlanc, J. G. (2019). Tropical fruit by-products water extracts as sources of soluble fibres and phenolic compounds with potential antioxidant, anti-inflammatory, and functional properties. Journal of Functional Foods, 52, 724-733. https://doi.org/10.1016/j.jff.2018.12.002.
Andrews, P., & Johnson, R. J. (2020). Evolutionary basis for the human diet: Consequences for human health. Journal of Internal Medicine, 287(3), 226-237. https://doi.org/10.1111/joim.13011.
Azzeh, F. S., Al-Hebshi, A. H., Al-Essimii, H. D., & Alarjah, M. A. (2017). Vitamin C supplementation and serum uric acid: A reaction to hyperuricemia and gout disease. PharmaNutrition, 5(2), 47-51. https://doi.org/10.1016/j.phanu.2017.02.002.
Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., & Weickert, M. O. (2020). The health benefits of dietary fibre. Nutrients, 12(10), 3209. https://doi.org/10.3390/nu12103209.
Besednova, N. N., Andryukov, B. G., Zaporozhets, T. S., Kryzhanovsky, S. P., Fedyanina, L. N., Kuznetsova, T. A., Zvyagintseva, T. N., & Shchelkanov, M. Y. (2021). Antiviral Effects of Polyphenols from Marine Algae. Biomedicines, 9(2), 200. https://doi.org/10.3390/biomedicines9020200.
Bove, M., Cicero, A. F., Veronesi, M., & Borghi, C. (2017). An evidence-based review on urate-lowering treatments: Implications for optimal treatment of chronic hyperuricemia. Vascular Health and Risk Management, 13, 23-28. https://doi.org/10.2147/VHRM.S115080.
Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317-333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x.
Butler, F., Alghubayshi, A., & Roman, Y. (2021). The epidemiology and genetics of hyperuricemia and gout across major racial groups: A literature review and population genetics secondary database analysis. Journal of Personalized Medicine, 11(3), 231. https://doi.org/10.3390/jpm11030231.
Caliceti, C., Calabria, D., Roda, A., & Cicero, A. F. G. (2017). Fructose intake, serum uric acid, and cardiometabolic disorders: A critical review. Nutrients, 9(4), 395. https://doi.org/10.3390/nu9040395.
Cao, J., Zhang, J., Zhang, Y., Li, H., Jiang, C., Lin, T., Zhou, Z., Song, Y., Liu, C., Liu, L., Wang, B., Li, J., Zhang, Y., Cui, Y., Huo, Y., Wang, X., Zhang, H., Qin, X., & Xu, X. (2020). Plasma magnesium and the risk of new-onset hyperuricaemia in hypertensive patients. British Journal of Nutrition, 124(2), 1-8. https://doi.org/10.1017/S0007114520001099.
Carrillo, J. A., Zafrilla, M. P., & Marhuenda, J. (2019). Cognitive function and consumption of fruit and vegetable polyphenols in a young population: Is There a relationship? Foods, 8(10), 507. https://doi.org/10.3390/foods8100507.
Chen, C., Lu, J. M., & Yao, Q. (2016). Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: An overview. Medical Science Monitor, 22, 2501-2512. https://doi.org/10.12659/msm.899852.
Chen, G., Zhang, Q., Ma, X., & Xu, S. (2003). Hyperuricemia model induced by yeast in mice. Chinese Pharmacological Bulletin, 19(4), 467-469.
Choi, H. K., Gao, X., & Curhan, G. (2009). Vitamin C intake and the risk of gout in men: A prospective study. Archives Internal Medicine, 169(5), 502-507. https://doi.org/10.1001/archinternmed.2008.606.
Choi, H. K., Willett, W., & Curhan, G. (2010). Fructose-rich beverages and risk of gout in women. JAMA, 304(20), 2270-2278. https://doi.org/10.1001/jama.2010.1638.
Cronin, P., Joyce, S. A., O'Toole, P. W., & O'Connor, E. M. (2021). Dietary fibre modulates the gut microbiota. Nutrients, 13(5), 1655. https://doi.org/10.3390/nu13051655.
de Baaij, J. H., Hoenderop, J. G., & Bindels, R. J. (2015). Magnesium in man: Implications for health and disease. Physiological Reviews, 95(1), 1-46. https://doi.org/10.1152/physrev.00012.2014.
Deeks, E. D. (2017). Lesinurad: A review in hyperuricaemia of gout. Drugs and Aging, 34(5), 401-410. https://doi.org/10.1007/s40266-017-0461-y.
Dew, T. P., Day, A. J., & Morgan, M. R. (2005). Xanthine oxidase activity in vitro: Effects of food extracts and components. Journal of Agricultural and Food Chemistry, 53(16), 6510-6515. https://doi.org/10.1021/jf050716j.
Dominguez-Perles, R., Baenas, N., & Garcia-Viguera, C. (2020). New insights in (Poly)phenolic compounds: From dietary sources to health evidence. Foods, 9(5), 543. https://doi.org/10.3390/foods9050543.
Dreher, M. L. (2018). Whole fruits and fruit fiber emerging health effects. Nutrients, 10(12), 1833. https://doi.org/10.3390/nu10121833.
Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., Novellino, E., & Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221-2243. https://doi.org/10.1002/ptr.6419.
El Barnossi, A., Moussaid, F., & Iraqi Housseini, A. (2021). Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. Biotechnology Reports, 29, e00574. https://doi.org/10.1016/j.btre.2020.e00574.
Eraly, S. A., Vallon, V., Rieg, T., Gangoiti, J. A., Wikoff, W. R., Siuzdak, G., Barshop, B. A., & Nigam, S. K. (2008). Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiological Genomics, 33(2), 180-192. https://doi.org/10.1152/physiolgenomics.00207.2007.
Feliciano, R. P., Pritzel, S., Heiss, C., & Rodriguez-Mateos, A. (2015). Flavonoid intake and cardiovascular disease risk. Current Opinion in Food Science, 2, 92-99. https://doi.org/10.1016/j.cofs.2015.02.006.
Gao, X., Curhan, G., Forman, J. P., Ascherio, A., & Choi, H. K. (2008). Vitamin C intake and serum uric acid concentration in men. Journal of Rheumatology, 35(9), 1853-1858.
Gaspar, R. S., da Silva, S. A., Stapleton, J., Fontelles, J. L. L., Sousa, H. R., Chagas, V. T., Alsufyani, S., Trostchansky, A., Gibbins, J. M., & Paes, A. M. A. (2019). Myricetin, the main flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases PDI and ERp5. Frontiers Pharmacology, 10, 1678. https://doi.org/10.3389/fphar.2019.01678.
Guo, C., Bi, J., Li, X., Lyu, J., Wu, X., & Xu, Y. (2020). Polyphenol metabolic diversity of Chinese peach and nectarine at thinned and ripe stages by UPLC-ESI-Q-TOF-MS combined with multivariate statistical analysis. Journal of Food Composition and Analysis, 90, 103502. https://doi.org/10.1016/j.jfca.2020.103502.
Ho, K., Ferruzzi, M. G., & Wightman, J. D. (2020). Potential health benefits of (poly)phenols derived from fruit and 100% fruit juice. Nutrition Reviews, 78(2), 145-174. https://doi.org/10.1093/nutrit/nuz041.
Hou, C. W., Lee, Y. C., Hung, H. F., Fu, H. W., & Jeng, K. C. (2012). Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity. The American Journal of Chinese Medicine, 40(5), 979-991. https://doi.org/10.1142/S0192415X12500723.
Irondi, E. A., Agboola, S. O., Oboh, G., Boligon, A. A., Athayde, M. L., & Shode, F. O. (2016). Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. Journal of Intercultural Ethnopharmacology, 5(2), 122-130. https://doi.org/10.5455/jice.20160321115402.
Jakse, B., Jakse, B., Pajek, M., & Pajek, J. (2019). Uric acid and plant-based nutrition. Nutrients, 11(8), 1736. https://doi.org/10.3390/nu11081736.
Jiang, L. L., Gong, X., Ji, M. Y., Wang, C. C., Wang, J. H., & Li, M. H. (2020). Bioactive compounds from plant-based functional foods: A promising choice for the prevention and management of hyperuricemia. Foods, 9(8), 973. https://doi.org/10.3390/foods9080973.
Jones, H. F., Butler, R. N., & Brooks, D. A. (2011). Intestinal fructose transport and malabsorption in humans. American Journal of Physiology Gastrointestinal and Liver Physiology, 300(2), G202-206. https://doi.org/10.1152/ajpgi.00457.2010.
Juraschek, S. P., Miller, E. R. 3rd, & Gelber, A. C. (2011). Effect of oral vitamin C supplementation on serum uric acid: A meta-analysis of randomized controlled trials. Arthritis Care & Research, 63(9), 1295-1306. https://doi.org/10.1002/acr.20519.
Kaneko, C., Ogura, J., Sasaki, S., Okamoto, K., Kobayashi, M., Kuwayama, K., Narumi, K., & Iseki, K. (2017). Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation. Biochimica Et Biophysica Acta, 1861(3), 559-566. https://doi.org/10.1016/j.bbagen.2016.11.042.
Kannangara, D. R., Phipps-Green, A. J., Dalbeth, N., Stamp, L. K., Williams, K. M., Graham, G. G., Day, R. O., & Merriman, T. R. (2016). Hyperuricaemia: Contributions of urate transporter ABCG2 and the fractional renal clearance of urate. Annals of the Rheumatic Diseases, 75(7), 1363-1366. https://doi.org/10.1136/annrheumdis-2015-208111.
Kimura, T., Takahashi, M., Yan, K., & Sakurai, H. (2014). Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PLoS One, 9(1), e84996. https://doi.org/10.1371/journal.pone.0084996.
Kolasinski, S. L. (2014). Food, drink, and herbs: Alternative therapies and gout. Current Rheumatology Reports, 16(4), 409. https://doi.org/10.1007/s11926-014-0409-8.
Kumar, H., Bhardwaj, K., Cruz-Martins, N., Nepovimova, E., Oleksak, P., Dhanjal, D. S., Bhardwaj, S., Singh, R., Chopra, C., Verma, R., Chauhan, P. P., Kumar, D., & Kuča, K. (2021). Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: A mini review. Molecules, 26(11), 3447. https://doi.org/10.3390/molecules26113447.
Lauricella, M., Lo Galbo, V., Cernigliaro, C., Maggio, A., Palumbo Piccionello, A., Calvaruso, G., Carlisi, D., Emanuele, S., Giuliano, M., & D'Anneo, A. (2019). The anti-cancer effect of Mangifera indica L. peel extract is associated to gammaH2AX-mediated apoptosis in colon cancer cells. Antioxidants (Basel), 8(10), 422. https://doi.org/10.3390/antiox8100422.
Lee, C. T., Chang, L. C., Liu, C. W., & Wu, P. F. (2017). Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats. Molecular Nutrition & Food Research, 61(10), 1601030. https://doi.org/10.1002/mnfr.201601030.
Li, L. Z., Zhou, G. X., Li, J., Jiang, W., Liu, B. L., & Zhou, W. (2018). Compounds containing trace element copper or zinc exhibit as potent hyperuricemia inhibitors via xanthine oxidase inactivation. Journal of Trace Elements in Medicine and Biology, 49, 72-78. https://doi.org/10.1016/j.jtemb.2018.04.019.
Li, Q., Lin, H., Niu, Y., Liu, Y., Wang, Z., Song, L., Gao, L., & Li, L. (2020). Mangiferin promotes intestinal elimination of uric acid by modulating intestinal transporters. European Journal of Pharmacology, 888, 173490. https://doi.org/10.1016/j.ejphar.2020.173490.
Li, X., Liu, J., Ma, L., & Fu, P. (2019). Pharmacological urate-lowering approaches in chronic kidney disease. European Journal of Medicinal Chemistry, 166, 186-196. https://doi.org/10.1016/j.ejmech.2019.01.043.
Luczkiewicz, P., Kokotkiewicz, A., Dampc, A., & Luczkiewicz, M. (2014). Mangiferin: A promising therapeutic agent for rheumatoid arthritis treatment. Medical Hypotheses, 83(5), 570-574. https://doi.org/10.1016/j.mehy.2014.08.021.
Lyu, L. C., Hsu, C. Y., Yeh, C. Y., Lee, M. S., Huang, S. H., & Chen, C. L. (2003). A case-control study of the association of diet and obesity with gout in Taiwan. The American Journal of Clinical Nutrition, 78(4), 690-701. https://doi.org/10.1093/ajcn/78.4.690.
Madbouly, A. K., Abo Elyousr, K. A. M., & Ismail, I. M. (2020). Biocontrol of Monilinia fructigena, causal agent of brown rot of apple fruit, by using endophytic yeasts. Biological Control, 144, 104239. https://doi.org/10.1016/j.biocontrol.2020.104239.
Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., & Mollace, V. (2016). Regulation of uric acid metabolism and excretion. International Journal of Cardiology, 213, 8-14. https://doi.org/10.1016/j.ijcard.2015.08.109.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727.
Mandal, A. K., & Mount, D. B. (2015). The molecular physiology of uric acid homeostasis. Annual Review of Physiology, 77, 323-345. https://doi.org/10.1146/annurev-physiol-021113-170343.
Maqsood, S., Adiamo, O., Ahmad, M., & Mudgil, P. (2020). Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chemistry, 308, 125522. https://doi.org/10.1016/j.foodchem.2019.125522.
Marriott, B. P., Cole, N., & Lee, E. (2009). National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. Journal of Nutrition, 139(6), 1228S-1235S. https://doi.org/10.3945/jn.108.098277.
Martín-Gómez, J., García-Martínez, T., Varo, M. Á., Mérida, J., & Serratosa, M. P. (2021). Phenolic compounds, antioxidant activity and color in the fermentation of mixed blueberry and grape juice with different yeasts. LWT, 146, 111661. https://doi.org/10.1016/j.lwt.2021.111661.
Mehmood, A., Zhao, L., Wang, C., Nadeem, M., Raza, A., Ali, N., & Shah, A. A. (2019). Management of hyperuricemia through dietary polyphenols as a natural medicament: A comprehensive review. Critical Reviews in Food Science and Nutrtion, 59(9), 1433-1455. https://doi.org/10.1080/10408398.2017.1412939.
Mohos, V., Fliszar-Nyul, E., & Poor, M. (2020). Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by flavonoid aglycones and some of their conjugates. International Journal of Molecular Sciences, 21(9), 3256. https://doi.org/10.3390/ijms21093256.
Muraoka, S., & Miura, T. (2003). Inhibition by uric acid of free radicals that damage biological molecules. Pharmacology & Toxicology, 93(6), 284-289. https://doi.org/10.1111/j.1600-0773.2003.pto930606.x.
Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K. R., Short, R. A., Glushakova, O., Ouyang, X., Feig, D. I., Block, E. R., Herrera-Acosta, J., Patel, J. M., & Johnson, R. J. (2006). A causal role for uric acid in fructose-induced metabolic syndrome. American Journal of Physiology Renal Physiology, 290(3), F625-F631. https://doi.org/10.1152/ajprenal.00140.2005.
Nakagawa, T., Lanaspa, M. A., & Johnson, R. J. (2019). The effects of fruit consumption in patients with hyperuricaemia or gout. Rheumatology (Oxford), 58(7), 1133-1141. https://doi.org/10.1093/rheumatology/kez128.
Nielsen, F. H. (2010). Magnesium, inflammation, and obesity in chronic disease. Nutrition Reviews, 68(6), 333-340. https://doi.org/10.1111/j.1753-4887.2010.00293.x.
Otani, N., Ouchi, M., Hayashi, K., Jutabha, P., & Anzai, N. (2017). Roles of organic anion transporters (OATs) in renal proximal tubules and their localization. Anatomical Science International, 92(2), 200-206. https://doi.org/10.1007/s12565-016-0369-3.
Ötles, S., & Ozgoz, S. (2014). Health effects of dietary fiber. Acta Sci Pol Technol Aliment, 13(2), 191-202. https://doi.org/10.17306/J.AFS.2014.2.8.
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41.
Prasad, A. S. (2014). Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. Journal of Trace Elements in Medicine and Biology, 28(4), 364-371. https://doi.org/10.1016/j.jtemb.2014.07.019.
Qin, Y., Xiao, J., Wang, Y., Dong, Z., Woo, M. W., & Chen, X. D. (2020). Mechanistic exploration of glycemic lowering by soluble dietary fiber ingestion: Predictive modeling and simulation. Chemical Engineering Science, 228, 115965. https://doi.org/10.1016/j.ces.2020.115965.
Riches, P. L., Wright, A. F., & Ralston, S. H. (2009). Recent insights into the pathogenesis of hyperuricaemia and gout. Human Molecular Genetics, 18(R2), R177-R184. https://doi.org/10.1093/hmg/ddp369.
Rosemeyer, H. (2004). The chemodiversity of purine as a constituent of natural products. Chemistry & Biodiversity, 1(3), 361-401. https://doi.org/10.1002/cbdv.200490033.
Russo, E., Leoncini, G., Esposito, P., Garibotto, G., Pontremoli, R., & Viazzi, F. (2020). Fructose and uric acid: Major mediators of cardiovascular disease risk starting at pediatric age. International Journal of Molecular Sciences, 21(12), 4479. https://doi.org/10.3390/ijms21124479.
Salamone, D., Rivellese, A. A., & Vetrani, C. (2021). The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: The possible role of dietary fibre. Acta Diabetologica, 58(9), 1131-1138. https://doi.org/10.1007/s00592-021-01727-5.
Sautin, Y. Y., & Johnson, R. J. (2008). Uric acid: The oxidant-antioxidant paradox. Nucleosides, Nucleotides & Nucleic Acids, 27(6), 608-619. https://doi.org/10.1080/15257770802138558.
Sefi, M., Chaabane, M., Elwej, A., Bejaoui, S., Marrekchi, R., Jamoussi, K., Gouiaa, N., Boudawara Sellami, T., El Cafsi, M., Zeghal, N., & Soudani, N. (2020). Zinc alleviates maneb-induced kidney injury in adult mice through modulation of oxidative stress, genotoxicity, and histopathological changes. Environmental Science and Pollution Research, 27(8), 8091-8102. https://doi.org/10.1007/s11356-019-07175-7.
Shen, L., & Ji, H. F. (2011). Potential of vitamin C in the prevention and treatment of gout. Nature Reviews Rheumatology, 7(6), 368. https://doi.org/10.1038/nrrheum.2010.222-c1.
Soliman, G. A. (2019). Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients, 11(5), 1155. https://doi.org/10.3390/nu11051155.
Stamp, L. K., O'Donnell, J. L., Frampton, C., Drake, J. M., Zhang, M., & Chapman, P. T. (2013). Clinically insignificant effect of supplemental vitamin C on serum urate in patients with gout: A pilot randomized controlled trial. Arthritis & Rheumatology, 65(6), 1636-1642. https://doi.org/10.1002/art.37925.
Stiburkova, B., Pavelcova, K., Pavlikova, M., Jesina, P., & Pavelka, K. (2019). The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Research & Therapy, 21(1), 77. https://doi.org/10.1186/s13075-019-1860-8.
Sun, S. Z., Flickinger, B. D., Williamson-Hughes, P. S., & Empie, M. W. (2010). Lack of association between dietary fructose and hyperuricemia risk in adults. Nutrition & Metabolism, 7, 16. https://doi.org/10.1186/1743-7075-7-16.
Sun, Y., Sun, J., Zhang, P., Zhong, F., Cai, J., & Ma, A. (2019). Association of dietary fiber intake with hyperuricemia in U.S. adults. Food & Function, 10(8), 4932-4940. https://doi.org/10.1039/C8FO01917G.
Tasic, V., Hynes, A. M., Kitamura, K., Cheong, H. I., Lozanovski, V. J., Gucev, Z., Jutabha, P., Anzai, N., & Sayer, J. A. (2011). Clinical and functional characterization of URAT1 variants. PLoS One, 6(12), e28641. https://doi.org/10.1371/journal.pone.0028641.
Thottam, G. E., Krasnokutsky, S., & Pillinger, M. H. (2017). Gout and metabolic syndrome: A tangled web. Current Rheumatology Reports, 19(10), 60. https://doi.org/10.1007/s11926-017-0688-y.
Towiwat, P., & Li, Z. G. (2015). The association of vitamin C, alcohol, coffee, tea, milk and yogurt with uric acid and gout. International Journal of Rheumatic Diseases, 18(5), 495-501. https://doi.org/10.1111/1756-185X.12622.
Tremblay, A., Clinchamps, M., Pereira, B., Courteix, D., Lesourd, B., Chapier, R., Obert, P., Vinet, A., Walther, G., Chaplais, E., Bagheri, R., Baker, J. S., Thivel, D., Drapeau, V., & Dutheil, F. (2020). Dietary fibres and the management of obesity and metabolic syndrome: The RESOLVE study. Nutrients, 12(10), 2911. https://doi.org/10.3390/nu12102911.
Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246. https://doi.org/10.3390/nu2121231.
Tuerk, M. J., & Fazel, N. (2009). Zinc deficiency. Current Opinion in Gastroenterology, 25(2), 136-143. https://doi.org/10.1097/MOG.0b013e328321b395.
Van den Berghe, G. (1986). Fructose: Metabolism and short-term effects on carbohydrate and purine metabolic pathways. Progress in Biochemical Pharmacology, 21, 1-32.
VanWert, A. L., Gionfriddo, M. R., & Sweet, D. H. (2010). Organic anion transporters: Discovery, pharmacology, regulation and roles in pathophysiology. Biopharmaceutics & Drug Disposition, 31(1), 1-71. https://doi.org/10.1002/bdd.693.
Venancio, V. P., Kim, H., Sirven, M. A., Tekwe, C. D., Honvoh, G., Talcott, S. T., & Mertens-Talcott, S. U. (2018). Polyphenol-rich mango (Mangifera indica L.) ameliorate functional constipation symptoms in humans beyond equivalent amount of fiber. Molecular Nutrition & Food Research, 62(12), e1701034. https://doi.org/10.1002/mnfr.201701034.
Wang, G., Zhong, D., Liu, H., Yang, T., Liang, Q., Wang, J., Zhang, R., & Zhang, Y. (2021). Water soluble dietary fiber from walnut meal as a prebiotic in preventing metabolic syndrome. Journal of Functional Foods, 78, 104358. https://doi.org/10.1016/j.jff.2021.104358.
Wang, H., Nair, M. G., Strasburg, G. M., Booren, A. M., & Gray, J. I. (1999). Antioxidant polyphenols from tart cherries (Prunus cerasus). Journal of Agricultural and Food Chemistry, 47(3), 840-844. https://doi.org/10.1021/jf980936f.
Williamson, G. (2017). The role of polyphenols in modern nutrition. Nutrition Bulletin, 42(3), 226-235. https://doi.org/10.1111/nbu.12278.
Wilunda, C., Sawada, N., Goto, A., Yamaji, T., Takachi, R., Ishihara, J., Mori, N., Kotemori, A., Iwasaki, M., & Tsugane, S. (2021). Associations between changes in fruit and vegetable consumption and weight change in Japanese adults. European Journal of Nutrition, 60(1), 217-227. https://doi.org/10.1007/s00394-020-02236-x.
Wong, S. K., Chin, K. Y., & Ima-Nirwana, S. (2020). Vitamin C: A Review on its Role in the Management of Metabolic Syndrome. International Journal of Medical Sciences, 17(11), 1625-1638. https://doi.org/10.7150/ijms.47103.
Wu, M., Ma, Y., Chen, X., Liang, N., Qu, S., & Chen, H. (2021). Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Disease Models & Mechanisms, 14(3), dmm048041. https://doi.org/10.1242/dmm.048041.
Xie, D. X., Xiong, Y. L., Zeng, C., Wei, J., Yang, T., Li, H., Wang, Y. L., Gao, S. G., Li, Y. S., & Lei, G. H. (2015). Association between low dietary zinc and hyperuricaemia in middle-aged and older males in China: A cross-sectional study. British Medical Journal Open, 5(10), e008637. https://doi.org/10.1136/bmjopen-2015-008637.
Xu, L., Shi, Y., Zhuang, S., & Liu, N. (2017). Recent advances on uric acid transporters. Oncotarget, 8(59), 100852-100862. https://doi.org/10.18632/oncotarget.20135.
Zeng, C., Wang, Y. L., Wei, J., Yang, T., Li, H., Xie, D. X., Li, Y. S., & Lei, G. H. (2015). Association between low serum magnesium concentration and hyperuricemia. Magnesium Research, 28(2), 56-63. https://doi.org/10.1684/mrh.2015.0384.
Zhang, D., Jiao, R., & Kong, L. (2017). High dietary fructose: Direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients, 9(4), 335. https://doi.org/10.3390/nu9040335.
Zhang, H., Wu, R., Xiao, Y., Yu, Z., & Li, X. (2020). Fruit Differentiation on Gout and Hyperuricemia. Chinese Medicine Modern Distance Education of China, 18(9), 109-111. https://doi.org/10.3969/j.issn.1672-2779.2020.09.044.
Zhang, X., Nie, Q., Zhang, Z., Zhao, J., Zhang, F., Wang, C., Wang, X., & Song, G. (2021). Resveratrol affects the expression of uric acid transporter by improving inflammation. Molecular Medicine Reports, 24(2), 564. https://doi.org/10.3892/mmr.2021.12203.
Zhang, Y., Liu, Y., & Qiu, H. (2018). Association between dietary zinc intake and hyperuricemia among adults in the United States. Nutrients, 10(5), 568. https://doi.org/10.3390/nu10050568.
Zhang, Y., & Qiu, H. (2018). Dietary magnesium intake and hyperuricemia among US adults. Nutrients, 10(3), 296. https://doi.org/10.3390/nu10030296.
Zhang, Z. C., Su, G. H., Luo, C. L., Pang, Y. L., Wang, L., Li, X., Wen, J. H., & Zhang, J. L. (2015). Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice. Food & Function, 6(9), 3045-3055. https://doi.org/10.1039/C5FO00499C.
Zheng, Z., Harman, J. L., Coresh, J., Kottgen, A., McAdams-DeMarco, M. A., Correa, A., Young, B. A., Katz, R., & Rebholz, C. M. (2018). The dietary fructose: Vitamin C intake ratio is associated with hyperuricemia in African-American adults. Journal of Nutrition, 148(3), 419-426. https://doi.org/10.1093/jn/nxx054.
Zhou, H., Ma, Z., Lu, Y., Du, Y., Shao, J., Wang, L., Wu, Q., Pan, B., Zhu, W., Zhao, Q., & Wei, H. (2020). Elevated serum uric acid, hyperuricaemia and dietary patterns among adolescents in mainland China. Journal of Pediatric Endocrinology & Metabolism, 33(4), 487-493. https://doi.org/10.1515/jpem-2019-0265.
Zhu, L., Gao, M., Li, H., Deng, Z.-Y., Zhang, B., & Fan, Y. (2021). Effects of soluble dietary fiber from sweet potato dregs on the structures of intestinal flora in mice. Food Bioscience, 40, 100880. https://doi.org/10.1016/j.fbio.2021.100880.
Zorzi, M., Gai, F., Medana, C., Aigotti, R., Morello, S., & Peiretti, P. G. (2020). Bioactive compounds and antioxidant capacity of small berries. Foods, 9(5), 623. https://doi.org/10.3390/foods9050623. - Contributed Indexing: Keywords: fruit components; hyperuricemia; mechanisms of affecting UA; uric acid
- Accession Number: 0 (Dietary Fiber)
268B43MJ25 (Uric Acid)
30237-26-4 (Fructose) - Publication Date: Date Created: 20210824 Date Completed: 20211028 Latest Revision: 20211028
- Publication Date: 20240829
- Accession Number: 10.1111/jfbc.13911
- Accession Number: 34426969
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.