αβ T cells replacing dermal and epidermal γδ T cells in Tcrd -/- mice express an MHC-independent TCR repertoire.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
    • Publication Information:
      Publication: <2005->: Weinheim : Wiley-VCH
      Original Publication: Weinheim, Verlag Chemie GmbH.
    • Subject Terms:
    • Abstract:
      The epidermis of mouse skin is usually populated by dendritic epidermal T cells (γδDETC) expressing an invariant Vγ5Vδ1 + TCR. In Tcrd -/- mice, skin-resident γδDETC are replaced by αβDETC carrying polyclonal αβ TCRs. Although they exhibit a dendritic morphology, αβDETC were reported to be less functional than genuine γδDETC, likely because their TCR is unable to interact with the original TCR ligands of γδDETC. However, the TCR repertoire of those replacement DETC in Tcrd -/- mice might provide clues for understanding the development and selection of canonical γδDETC. Here, we compare the phenotype and TCR repertoires of wild-type and Tcrd -/- mouse skin T cells. Our data reveal that αβDETC are CD4/CD8 double negative and express an MHC-independent TCR repertoire. Furthermore, we identify a second MHC-independent population of CD103 hi CD4/ CD8 double-negative αβ T cells in the dermis of Tcrd -/- mice.
      (© 2021 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.)
    • References:
      Prinz, I., Silva-Santos, B. and Pennington, D. J., Functional development of γδ T cells. Eur. J. Immunol. 2013. 43: 1988-1994.
      Carding, S. R. and Egan, P. J., γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2002. 2: 336-345.
      Chien, Y. H., Meyer, C. and Bonneville, M., γδ T cells: first line of defense and beyond. Annu. Rev. Immunol. 2014. 32: 121-155.
      Itohara, S., Farr, A. G., Lafaille, J. J., Bonneville, M., Takagaki, Y., Haas, W. and Tonegawa, S., Homing of a γδ thymocyte subset with homogenous T cell receptors to mucsal epithelia. Nature 1990. 343: 754-757.
      O'Brien, R. and Born, W. K., Dermal γδ T cells - what have we learned? Cell. Immunol. 2015. 296: 62-69.
      Haas, J. D., Ravens, S., Düber, S., Sandrock, I., Oberdörfer, L., Kashani, E., Chennupati, V. et al., Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. Immunity 2012. 37: 48-59.
      Asarnow, D. M., Kuziel, W. A., Bonyhadi, M., Tigelaar, R. E., Tucker, P. W. and Allison, J. P., Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 1988. 55: 837-847.
      McConell, T. J., Yokohama, W. M., Kikuchi, G. E., Einhorn, G. P., Stingl, G., Shevach, E. M. and Coligan, J. E., Delta-chains of dendritic epidermal T cell receptors are diverse but pair with gamma-chains in a restricted manner. J. Immunnol. 1989. 142: 2924-2931.
      Steiner, G., Koning, F., Elbe, A., Tschachler, E., Yokoyama, W. M., Shevach, E. M., And, G. S. et al., Characterization of T cell receptors on resident murine dendritic epidermal T cells. Eur. J. Immunol. 1988. 18: 1323-1328.
      Jameson, J. M., Ugarte, K., Chen, N., Yachi, P., Fuchs, E., Boismenu, R. and Havran, W. L., A role for skin γδ T cells in wound repair. Science 2002. 296: 747-749.
      Sutoh, Y., Mohamed, R. H. and Kasahara, M., Origin and evolution of dendritic epidermal T cells. Front. Immunol. 2018. 9: 1-5.
      Chodaczek, G., Papanna, V., Zal, M. A. and Zal, T., Body barrier surveillance by epidermal gammadelta TCR. Nat. Immunol. 2012. 13: 272-282.
      Jameson, J. M., Cauvi, G., Witherden, D. A. and Havran, W. L., A keratinocyte responsive γδ TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J. Immunol. 2004. 74: 3573-3579.
      Komori, H. K., Witherden, D. A., Kelly, R., Sendaydiego, K., Jameson, J. M., Teyton, L. and Havran, W. L., Dendritic epidermal γδT cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding. J Immunol. 2012. 188: 2972-2976.
      Zhang, B., Wu, J., Jiao, Y., Bock, C., Dai, M., Chen, B., Chao, N. et al., Differential requirements of TCR signaling in homeostatic maintenance and function of dendritic epidermal T cells. J. Immunol. 2015. 195: 4282-4291.
      Sharp, L. L., Jameson, J. M., Cauvi, G. and Havran, W. L., Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 2005. 6: 73-79.
      Wang, Y., Bai, Y., Li, Y., Liang, G., Jiang, Y., Liu, Z., Liu, M. et al., IL-15 enhances activation and IGF-1 production of dendritic epidermal T cells to promote wound healing in diabetic mice. Front. Immunol. 2017. 8: 1-11.
      Edelbaum, D., Mohamadzadeh, M., Bergstresser, P. R., Sugamura, K. and Takashima, A., Interleukin (IL)-15 promotes the growth of murine epidermal γδ T cells by a mechanism involving the β- and γ(c)-chains of the IL-2 receptor. J. Invest. Dermatol. 1995. 105: 837-843.
      Gentek, R., Ghigo, C., Hoeffel, G., Jorquera, A., Msallam, R., Wienert, S., Klauschen, F. et al., Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J. Exp. Med. 2018. 215: 2994-3005.
      Mallick-Wood, C. A., Lewis, J. M., Richie, L. I., Owen, M. J., Tigelaar, R. E. and Hayday, A. C., Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science. 1998. 279: 1729-1733.
      Hara, H., Kishihara, K., Matsuzaki, G., Takimoto, H., Tsukiyama, T., Tigelaar, R. E. and Nomoto, K., Development of dendritic epidermal T cells with a skewed diversity of γδTCRs in Vδ1-deficient mice. J. Immunol. 2000. 165: 3695-3705.
      Boyden, L. M., Lewis, J. M., Barbee, S. D., Bas, A., Girardi, M., Hayday, A. C., Tigelaar, R. E. et al., Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 2008. 40: 656-662.
      Barbee, S. D., Woodward, M. J., Turchinovich, G., Mention, J. J., Lewis, J. M., Boyden, L. M., Lifton, R. P. et al., Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc. Natl. Acad. Sci. U. S. A. 2011. 108: 3330-3335.
      Lewis, J. M., Girardi, M., Roberts, S. J., Barbee, S. D., Hayday, A. C. and Tigelaar, R. E., Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 2006. 7: 843-850.
      Xiong, N., Kang, C. and Raulet, D. H., Positive selection of dendritic epidermal γδ T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 2004. 21: 121-131.
      Aono, A., Enomoto, H., Yoshida, N., Yoshizaki, K., Kishimoto, T. and Komori, T., Forced expression of terminal deoxynucleotidyl transferase in fetal thymus resulted in a decrease in γδ T cells and random dissemination of Vγ3Vδ1 T cells in skin of newborn but not adult mice. Immunology 2000. 99: 489-497.
      Lu, J., Van Laethem, F., Bhattacharya, A., Craveiro, M., Saba, I., Chu, J., Love, N. C. et al., Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nat. Commun. 2019. 10: 1-14.
      Stadinski, B. D., Shekhar, K., Gómez-Touriño, I., Jung, J., Sasaki, K., Sewell, A. K., Peakman, M. et al., Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat. Immunol. 2016. 17: 946-955.
      Davis, S. J. and Merwe, P.A. Van Der, The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 2006. 7: 803-809.
      Schön, M. P., Schön, M., Parker, C. M. and Williams, I. R., Dendritic epidermal T cells (DETC) are diminished in integrin αE(CD103)-deficient mice. J. Invest. Dermatol. 2002. 119: 190-193.
      Payer, E., Kutil, R. and Sting, G., CD5- dendritic epidermal T cells are derived from CD5+ precursor cells. Eur. J. Immunol. 1994. 24: 1317-1322.
      Witherden, D. A., Verdino, P., Rieder, S. E., Garijo, O., Robyn, E., Teyton, L., Fischer, W. H. et al., The adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science 2010. 329: 1205-1210.
      Whang, M. I., Guerra, N. and Raulet, D. H., Costimulation of dendritic epidermal γδ T cells by a new NKG2D ligand expressed specifically in the skin. J. Immunnol. 2009. 182: 4557-4564.
      Ye, S.-K., Maki, K., Lee, H.-C., Ito, A., Kawai, K., Suzuki, H., Mak, T. W. et al., Differential roles of cytokine receptors in the development of epidermal γδ T cells. J. Immunol. 2001. 167: 1929-1934.
      De Creus, A., Van Beneden, K., Stevenaert, F., Debacker, V., Plum, J. and Leclercq, G., Developmental and functional defects of thymic and epidermal Vγ3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J. Immunol. 2002. 168: 6486-6493.
      Kawai, K., Suzuki, H., Tomiyama, K., Minagawa, M., Mak, T. W. and Ohashi, P. S., Requirement of the IL-2 receptor chain for the development of Vγ3 dendritic epidermal T cells. J. Invest. Dermatol. 1998. 110: 961-965.
      Tschachler, E., Steiner, G., Yamada, H., Elbe, A., Wolff, K. and Stingl, G., Dendritic epidermal T cells: activation requirements and phenotypic characterization of proliferating cells. J. Invest. Dermatol. 1989. 92: 763-768.
      Almeida, F. F., Tenno, M., Brzostek, J., Li, J. L., Allies, G., Hoeffel, G., See, P. et al., Identification of a novel lymphoid population in the murine epidermis. Sci. Rep. 2015. 5: 1-17.
      Sandrock, I., Reinhardt, A., Ravens, S., Binz, C., Wilharm, A., Martins, J., Oberdörfer, L. et al., Genetic models reveal origin, persistence and nonredundant functions of IL-17-producing γδ T cells. J. Exp. Med. 2018. 215: 3006-3018.
      Bogue, M., Gilfillan, S., Benoist, C. and Mathis, D., Regulation of N-region diversity in antigen receptors through thymocyte differentiation and thymus ontogeny. Proc. Natl. Acad. Sci. U. S. A. 1992. 89: 11011-11015.
      Komori, T., Pricop, L., Hatakeyama, A., Bona, C. A. and Alt, F. W., Repertoires of antigen receptors in Tdt congenitally deficient mice. Intern. Rev. Immunol. 1996. 13: 317-325.
      Deseke, M. and Prinz, I., Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell. Mol. Immunol. 2020. 17: 914-924.
      Fritsch, M., Andersson, Å., Petersson, K. and Ivars, F., A TCR α chain transgene induces maturation of CD4-CD8-αβ+ T cells from γδ T cell precursors. Eur. J. Immunol. 1998. 28: 828-837.
      Harsha Krovi, S., Kappler, J. W., Marrack, P. and Gapin, L., Inherent reactivity of unselected TCR repertoires to peptide-MHC molecules. Proc. Natl. Acad. Sci. U. S. A. 2019. 116: 22252-22261.
      Tan, L., Sandrock, I., Odak, I., Krebs, C., Prinz, I., Tan, L., Sandrock, I. et al., Single-cell transcriptomics identifies the adaptation of Scart1+ Vg6+ T cells to skin residency as activated effector cells. Cell Rep. 2019. 27: 3657-3671.
      Woolf, E., Brenner, O., Goldenberg, D., Levanon, D. and Groner, Y., Runx3 regulates dendritic epidermal T cell development. Dev. Biol. 2007. 303: 703-714.
      Pobezinsky, L. A., Angelov, G. S., Tai, X., Jeurling, S., Laethem, V., Feigenbaum, L., Park, J. et al., Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. Nat. Immunol. 2012. 13: 569-578.
      Spetz, A. L., Strominger, J., Groh-Spies V. T cell subsets in normal human epidermis. Am. J. Pathol. 1996. 149: 665-674.
      Groh, V., Fabbi, M., Hochstenbach, F., Maziarz, R. T. and Strominger, J. L., Double-negative (CD4-CD8-) lymphocytes bearing T-cell receptor alpha and beta chains in normal human skin. Proc. Natl. Acad. Sci. U. S. A. 1989. 86: 5059-5063.
      Hillhouse, E. E., Delisle, J. S. and Lesage, S., Immunoregulatory CD4- CD8- T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer. Front. Immunol. 2013. 4: 1-10.
      Dimova, T., Brouwer, M., Gosselin, F., Tassignon, J., Leo, O., Donner, C., Marchant, A. et al., Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl. Acad. Sci. U. S. A. 2015. 112: E556-E565.
      Reitermaier, R., Krausgruber, T., Fortelny, N., Ayub, T., Vieyra-Garcia, P. A., Kienzl, P., Wolf, P. et al., αβγδ T cells play a vital role in fetal human skin development and immunity. J. Exp. Med. 2021. 218.
      Das, S., Li, J., Hirano, M., Sutoh, Y., Herrin, B. R. and Cooper, M. D., Evolution of two prototypic T cell lineages. Cell. Immunol. 2015. 296: 87-94.
      Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W. W. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457-1973.
      Bolotin, D. A., Poslavsky, S., Mitrophanov, I., Shugay, M., Mamedov, I. Z., Putintseva, E. V. and Chudakov, D. M., MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 2015. 12: 380-381.
      Shugay, M., Bagaev, D. V., Turchaninova, M. A., Bolotin, D. A., Britanova, O. V., Putintseva, E. V., Pogorelyy, M. V. et al., VDJtools: unifying post-analysis of T cell receptor repertoires. PLOS Comput. Biol. 2015. 11: e1004503.
      Sethna, Z., Elhanati, Y., Callan, C. G., Walczak, A. M. and Mora, T., OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs. Bioinformatics 2019. 35: 2974-2981.
      Crooks, G., Hon, G., Chandonia, J. and Brenner, S., WebLogo: a sequence logo generator. Genome Res. 2004. 14: 1188-1190.
      Lakens, D., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 2013. 4: 1-12.
      Sawilowsky, S. S., New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009. 8: 597-599.
      Hofmann, M. A., Searching for effects in big data: Why p-values are not advised and what to use instead. In: Proceedings of the 2015 Winter Simulation Conference; 2015: 725-736.
      Heilig, J. S. and Tonegawa, S., Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 1986. 322: 836-840.
    • Contributed Indexing:
      Keywords: DETC; MHC-independent αβ TCR; TCR repertoire; Tcrd−/− mouse; skin T cells
    • Accession Number:
      0 (Receptors, Antigen, T-Cell, alpha-beta)
      0 (Receptors, Antigen, T-Cell, gamma-delta)
    • Publication Date:
      Date Created: 20210816 Date Completed: 20211216 Latest Revision: 20211216
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/eji.202149243
    • Accession Number:
      34398456