Genome-wide and sister chromatid-resolved profiling of protein occupancy in replicated chromatin with ChOR-seq and SCAR-seq.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101284307 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-2799 (Electronic) Linking ISSN: 17502799 NLM ISO Abbreviation: Nat Protoc Subsets: MEDLINE
    • Publication Information:
      Original Publication: London, UK : Nature Pub. Group, 2006-
    • Subject Terms:
    • Abstract:
      Elucidating the mechanisms underlying chromatin maintenance upon genome replication is critical for the understanding of how gene expression programs and cell identity are preserved across cell divisions. Here, we describe two recently developed techniques, chromatin occupancy after replication (ChOR)-seq and sister chromatids after replication (SCAR)-seq, that profile chromatin occupancy on newly replicated DNA in mammalian cells in 5 d of bench work. Both techniques share a common strategy that includes pulse labeling of newly synthesized DNA and chromatin immunoprecipitation (ChIP), followed by purification and high-throughput sequencing. Whereas ChOR-seq quantitatively profiles the post-replicative abundance of histone modifications and chromatin-associated proteins, SCAR-seq distinguishes chromatin occupancy between nascent sister chromatids. Together, these two complementary techniques have unraveled key mechanisms controlling the inheritance of modified histones during replication and revealed locus-specific dynamics of histone modifications across the cell cycle. Here, we provide the experimental protocols and bioinformatic pipelines for these methods.
      (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Zhou, K., Gaullier, G. & Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 26, 3–13 (2019). (PMID: 3053205910.1038/s41594-018-0166-x30532059)
      Martire, S. & Banaszynski, L. A. The roles of histone variants in fine-tuning chromatin organization and function. Nat. Rev. Mol. Cell Biol. 21, 522–541 (2020). (PMID: 32665685824530010.1038/s41580-020-0262-8)
      Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016). (PMID: 2734664110.1038/nrg.2016.5927346641)
      Stillman, B. Histone modifications: insights into their influence on gene expression. Cell 175, 6–9 (2018). (PMID: 3021736010.1016/j.cell.2018.08.03230217360)
      Annunziato, A. T. Assembling chromatin: the long and winding road. Biochim. Biophys. Acta 1819, 196–210 (2013). (PMID: 2445972210.1016/j.bbagrm.2011.07.00524459722)
      Annunziato, A. T. The fork in the road: histone partitioning during DNA replication. Genes 6, 353–371 (2015). (PMID: 26110314448866810.3390/genes6020353)
      Stewart-Morgan, K. R., Petryk, N. & Groth, A. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 22, 361–371 (2020). (PMID: 3223131210.1038/s41556-020-0487-y32231312)
      Scharf, A. N., Barth, T. K. & Imhof, A. Establishment of histone modifications after chromatin assembly. Nucleic Acids Res. 37, 5032–5040 (2009). (PMID: 19541851273190310.1093/nar/gkp518)
      Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585–590 (2015). (PMID: 25792596437819110.1101/gad.256354.114)
      Yu, C. et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389 (2018). (PMID: 30115745659724810.1126/science.aat8849)
      Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018). (PMID: 3011574610.1126/science.aau0294)
      Gan, H. et al. The Mcm2-Ctf4-Polα axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72, 140–151.e3 (2018). (PMID: 30244834619327210.1016/j.molcel.2018.09.001)
      Li, Z. et al. DNA polymerase alpha interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands. Sci. Adv. 6, eabb5820 (2020). (PMID: 32923642744967410.1126/sciadv.abb5820)
      Alabert, C. et al. Domain model explains propagation dynamics and stability of histone H3K27 and H3K36 methylation landscapes. Cell Rep. 30, 1223–1234.e8 (2020). (PMID: 3199576010.1016/j.celrep.2019.12.060)
      Reveron-Gomez, N. et al. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol. Cell 72, 239–249.e5 (2018). (PMID: 30146316620230810.1016/j.molcel.2018.08.010)
      Stewart-Morgan, K. R., Reveron-Gomez, N. & Groth, A. Transcription restart establishes chromatin accessibility after DNA replication. Mol. Cell 75, 284–297.e6 (2019). (PMID: 3112673910.1016/j.molcel.2019.04.033)
      Sirbu, B. M. et al. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 25, 1320–1327 (2011). (PMID: 21685366312743210.1101/gad.2053211)
      Dungrawala, H. & Cortez, D. Purification of proteins on newly synthesized DNA using iPOND. Methods Mol. Biol. 1228, 123–131 (2015). (PMID: 25311126438417610.1007/978-1-4939-1680-1_10)
      Alabert, C. et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16, 281–293 (2014). (PMID: 24561620428309810.1038/ncb2918)
      Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008). (PMID: 18272492226815110.1073/pnas.0712168105)
      Presolski, S. I., Hong, V. P. & Finn, M. G. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 3, 153–162 (2011). (PMID: 22844652340449210.1002/9780470559277.ch110148)
      Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002). (PMID: 1220354610.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4)
      Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002). (PMID: 1197556710.1021/jo011148j)
      Jakobsen, J. S. et al. Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Res. 23, 592–603 (2013). (PMID: 23403033361357710.1101/gr.146399.112)
      Orlando, D. A. et al. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep. 9, 1163–1170 (2014). (PMID: 2543756810.1016/j.celrep.2014.10.018)
      Fursova, N. A. et al. Synergy between variant PRC1 complexes defines polycomb-mediated gene repression. Mol. Cell 74, 1020–1036.e8 (2019). (PMID: 310295413102954110.1016/j.molcel.2019.03.024)
      Tseng, Z., Wu, T., Liu, Y., Zhong, M. & Xiao, A. Using native chromatin immunoprecipitation to interrogate histone variant protein deposition in embryonic stem cells. in Cancer Genomics and Proteomics (ed. Narendra, W.) 11–22 (Springer, 2014).
      Brind’Amour, J. et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat. Commun. 6, 6033 (2015). (PMID: 2560799210.1038/ncomms7033)
      O’Neill, L. P. & Turner, B. M. Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82 (2003). (PMID: 1289317610.1016/S1046-2023(03)00090-2)
      Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016). (PMID: 26751768472989910.1038/ncomms10208)
      Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009). (PMID: 198157761981577610.1126/science.1181369)
      Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017). (PMID: 29053968565121810.1016/j.cell.2017.09.043)
      Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009). (PMID: 19941815323274210.1016/j.molcel.2009.10.019)
      Xu, C. & Corces, V. G. Genome-wide mapping of protein-DNA interactions on nascent chromatin. Methods Mol. Biol. 1766, 231–238 (2018). (PMID: 29605856631113610.1007/978-1-4939-7768-0_13)
      Xu, C. & Corces, V. G. Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359, 1166–1170 (2018). (PMID: 29590048635996010.1126/science.aan5480)
      Yu, C. et al. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56, 551–563 (2014). (PMID: 25449133436266510.1016/j.molcel.2014.09.017)
      Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019). (PMID: 6488672648867210.1038/s41467-019-09982-5)
      Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020). (PMID: 32913232831877810.1038/s41596-020-0373-x)
      Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019). (PMID: 31431618670216810.1038/s41467-019-11559-1)
      Harada, A. et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat. Cell Biol. 21, 287–296 (2019). (PMID: 3053206810.1038/s41556-018-0248-330532068)
      Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216.e7 (2019). (PMID: 3147118810.1016/j.molcel.2019.07.01531471188)
      Adey, A. & Shendure, J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res. 22, 1139–1143 (2012). (PMID: 22466172337170810.1101/gr.136242.111)
      Wang, Q. et al. Tagmentation-based whole-genome bisulfite sequencing. Nat. Protoc. 8, 2022–2032 (2013). (PMID: 2407190810.1038/nprot.2013.11824071908)
      Xu, M., Wang, W., Chen, S. & Zhu, B. A model for mitotic inheritance of histone lysine methylation. EMBO Rep. 13, 60–67 (2011). (PMID: 22056817324624810.1038/embor.2011.206)
      Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995). (PMID: 78626674267410.1073/pnas.92.4.1237)
      Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316 (2006). (PMID: 1705246410.1016/j.molcel.2006.08.01917052464)
      Jasencakova, Z. et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell 37, 736–743 (2010). (PMID: 2022737610.1016/j.molcel.2010.01.03320227376)
      Parthun, M. R. Histone acetyltransferase 1: more than just an enzyme? Biochim. Biophys. Acta 1819, 256–263 (2012). (PMID: 2445972810.1016/j.bbagrm.2011.07.00624459728)
      Saredi, G. et al. H4K20me0 marks post-replicative chromatin and recruits the TONSL-MMS22L DNA repair complex. Nature 534, 714–718 (2016). (PMID: 27338793493987510.1038/nature18312)
      Rice, J. C. et al. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev. 16, 2225–2230 (2002). (PMID: 1220884518667110.1101/gad.1014902)
      Pesavento, J. J., Bullock, C. R., LeDuc, R. D., Mizzen, C. A. & Kelleher, N. L. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry. J. Biol. Chem. 283, 14927–14937 (2008). (PMID: 18381279239745610.1074/jbc.M709796200)
      Jasencakova, Z. & Groth, A. Restoring chromatin after replication: how new and old histone marks come together. Semin. Cell Dev. Biol. 21, 231–237 (2010). (PMID: 1981508510.1016/j.semcdb.2009.09.018)
      Bar-Ziv, R., Voichek, Y. & Barkai, N. Chromatin dynamics during DNA replication. Genome Res. 26, 1245–1256 (2016). (PMID: 27225843505204710.1101/gr.201244.115)
      Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651–2665 (2016). (PMID: 27568571501476210.1016/j.celrep.2016.07.083)
      Fennessy, R. T. & Owen-Hughes, T. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res. 44, 7189–7203 (2016). (PMID: 271060595009725)
      Gutiérrez, M. P., MacAlpine, H. K. & MacAlpine, D. M. Nascent chromatin occupancy profiling reveals locus- and factor-specific chromatin maturation dynamics behind the DNA replication fork. Genome Res. 29, 1123–1133 (2019). (PMID: 31217252663325710.1101/gr.243386.118)
      Ramachandran, S. & Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580–592 (2016). (PMID: 27062929485530210.1016/j.cell.2016.02.062)
      Julienne, H., Zoufir, A., Audit, B. & Arneodo, A. Human genome replication proceeds through four chromatin states. PLoS Comput. Biol. 9, e1003233 (2013). (PMID: 24130466379490510.1371/journal.pcbi.1003233)
      Grzybowski, A. T., Chen, Z. & Ruthenburg, A. J. Calibrating ChIP-Seq with nucleosomal internal standards to measure histone modification density genome wide. Mol. Cell 58, 886–899 (2015). (PMID: 26004229445821610.1016/j.molcel.2015.04.022)
      Minnoye, L. et al. Chromatin accessibility profiling methods. Nat. Rev. Methods Primers 1, 10 (2021). (PMID: 10.1038/s43586-020-00008-9)
      Klein, D. C. & Hainer, S. J. Genomic methods in profiling DNA accessibility and factor localization. Chromosome Res. 28, 69–85 (2020). (PMID: 3177682910.1007/s10577-019-09619-9)
      Uttamapinant, C. et al. Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew. Chem. Int. Ed. Engl. 51, 5852–5856 (2012). (PMID: 22555882351712010.1002/anie.201108181)
      Leach, T. J. et al. Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J. Biol. Chem. 275, 23267–23272 (2000). (PMID: 1080188910.1074/jbc.M910206199)
      Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012). (PMID: 22955991343149610.1101/gr.136184.111)
      Behringer, R., Gertsenstein, M., Nagy, K. V. & Nagy, A. Testing serum batches for mouse embryonic stem cell culture. Cold Spring Harb. Protoc. 2017, pdb.prot092411 (2017). (PMID: 2919659710.1101/pdb.prot092411)
      Green, M. R. & Sambrook, J. Molecular Cloning: A Laboratory Manual 4th edn (Cold Spring Harbor Laboratory Press, 2012).
      Luhur, A., Klueg, K. M., Roberts, J. & Zelhof, A. C. Thawing, culturing, and cryopreserving Drosophila cell lines. J. Vis. Exp. https://doi.org/10.3791/59459 (2019).
      Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018). (PMID: 29790989603081610.1093/nar/gky379)
      Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). (PMID: 192611741926117410.1186/gb-2009-10-3-r25)
      Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 2723002272300210.1093/bioinformatics/btp352)
      Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 201102782011027810.1093/bioinformatics/btq033)
      Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 2592715259271510.1186/gb-2008-9-9-r137)
      Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008). (PMID: 18497825532867810.1038/nature06968)
      Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019). (PMID: 31249361659758210.1038/s41598-019-45839-z)
      Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618–626 (2015). (PMID: 26167883468595610.1038/nsmb.3055)
      Richet, N. et al. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res. 43, 1905–1917 (2015). (PMID: 25618846433038310.1093/nar/gkv021)
    • Accession Number:
      0 (Chromatin)
    • Publication Date:
      Date Created: 20210807 Date Completed: 20211013 Latest Revision: 20211013
    • Publication Date:
      20250114
    • Accession Number:
      10.1038/s41596-021-00585-3
    • Accession Number:
      34363071