Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A comparative metabologenomic approach reveals mechanistic insights into Streptomyces antibiotic crypticity.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Qi Y;Qi Y; Nepal KK; Nepal KK; Blodgett JAV; Blodgett JAV
- Source:
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Aug 03; Vol. 118 (31).
- Publication Type:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
- Language:
English
- Additional Information
- Source:
Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
- Publication Information:
Original Publication: Washington, DC : National Academy of Sciences
- Subject Terms:
- Abstract:
Streptomyces genomes harbor numerous, biosynthetic gene clusters (BGCs) encoding for drug-like compounds. While some of these BGCs readily yield expected products, many do not. Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam (PTM) antibiotic production is widespread within the Streptomyces genus, and examples of active and cryptic PTM BGCs are known. To reveal further insights into the causes of biosynthetic crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a panel of S. griseus clade strains that included both poor and robust PTM producers. By comparing the genomes and PTM production profiles of these strains, we systematically mapped the PTM promoter architecture within the group, revealed that these promoters are directly activated via the global regulator AdpA, and discovered that small promoter insertion-deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also revealed an unexpected link between robust PTM expression and griseorhodin pigment coproduction, with weaker S. griseus -clade PTM producers being unable to produce the latter compound. This study highlights promoter indels and biosynthetic interactions as important, genetically encoded factors that impact BGC outputs, providing mechanistic insights that will undoubtedly extend to other Streptomyces BGCs. We highlight comparative metabologenomics as a powerful approach to expose genomic features that differentiate strong, antibiotic producers from weaker ones. This should prove useful for rational discovery efforts and is orthogonal to current engineering and molecular signaling approaches now standard in the field.
Competing Interests: Competing interest statement: J.A.V.B. was a former employee, consultant, and advisory member of Warp Drive Bio, Inc. Warp Drive Bio is now a wholly owned subsidiary of Revolution Medicines where J.A.V.B. is a minority shareholder.
(Copyright © 2021 the Author(s). Published by PNAS.)
- References:
Biochem Pharmacol. 2018 Jul;153:24-34. (PMID: 29309762)
Chem Biol. 2002 Sep;9(9):1017-26. (PMID: 12323376)
Org Biomol Chem. 2009 May 7;7(9):1753-60. (PMID: 19590766)
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11121-E11130. (PMID: 29229817)
Curr Top Med Chem. 2016;16(15):1727-39. (PMID: 26456464)
J Bacteriol. 2008 Jun;190(11):4050-60. (PMID: 18375553)
Appl Microbiol Biotechnol. 2019 Aug;103(16):6423-6434. (PMID: 31250060)
Int J Syst Evol Microbiol. 2008 Jan;58(Pt 1):149-59. (PMID: 18175701)
Curr Opin Biotechnol. 2021 Jun;69:145-152. (PMID: 33476936)
DNA Res. 2012 Jun;19(3):259-73. (PMID: 22449632)
J Bacteriol. 2004 Apr;186(7):2206-11. (PMID: 15028707)
Curr Opin Microbiol. 1998 Apr;1(2):145-51. (PMID: 10066473)
Nat Prod Rep. 2011 Jul;28(7):1311-33. (PMID: 21611665)
Microbiology (Reading). 2001 Jun;147(Pt 6):1535-1545. (PMID: 11390684)
Nat Prod Rep. 2009 Nov;26(11):1362-84. (PMID: 19844637)
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12175-80. (PMID: 26324907)
J Antibiot (Tokyo). 2005 Jan;58(1):1-26. (PMID: 15813176)
J Biol Chem. 2002 Aug 23;277(34):31228-36. (PMID: 12048195)
mBio. 2020 Oct 20;11(5):. (PMID: 33082252)
Lancet Infect Dis. 2013 Dec;13(12):1057-98. (PMID: 24252483)
Sci Rep. 2017 Aug 29;7(1):9784. (PMID: 28852167)
FEMS Microbiol Rev. 2017 Jan;41(1):19-33. (PMID: 27576366)
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17195-17203. (PMID: 32606248)
J Bacteriol. 1976 Apr;126(1):13-23. (PMID: 4421)
Mol Microbiol. 1999 Sep;33(5):919-32. (PMID: 10476027)
Nat Rev Microbiol. 2004 Jan;2(1):57-65. (PMID: 15035009)
J Bacteriol. 2000 Aug;182(16):4596-605. (PMID: 10913094)
ACS Synth Biol. 2015 Sep 18;4(9):1001-10. (PMID: 25924180)
J Bacteriol. 2011 May;193(10):2510-6. (PMID: 21421760)
Mol Microbiol. 2011 Jan;79(1):63-75. (PMID: 21166894)
Microbiology (Reading). 1996 Jun;142 ( Pt 6):1335-1344. (PMID: 8704973)
Nat Commun. 2013;4:2894. (PMID: 24305602)
J Microbiol Methods. 2003 Jun;53(3):401-3. (PMID: 12689717)
Front Microbiol. 2019 Sep 06;10:2074. (PMID: 31555254)
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11692-7. (PMID: 20547882)
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. (PMID: 12824337)
Biosci Biotechnol Biochem. 2005 Mar;69(3):431-9. (PMID: 15784968)
Mol Microbiol. 1994 Nov;14(3):533-45. (PMID: 7533884)
Appl Microbiol Biotechnol. 2020 Jan;104(2):701-711. (PMID: 31820069)
Metab Eng. 2013 Sep;19:98-106. (PMID: 23876413)
Nat Chem Biol. 2007 Aug;3(8):480-5. (PMID: 17632514)
Nat Biotechnol. 2019 Oct;37(10):1149-1154. (PMID: 31501558)
J Ind Microbiol Biotechnol. 2020 Jan;47(1):73-81. (PMID: 31705217)
Nat Biotechnol. 2020 Jan;38(1):76-83. (PMID: 31819261)
Curr Opin Biotechnol. 2021 Jun;69:26-34. (PMID: 33316577)
J Bacteriol. 2006 Apr;188(7):2512-20. (PMID: 16547038)
PLoS One. 2015 Jan 30;10(1):e0116457. (PMID: 25635820)
J Biol Chem. 2013 Oct 25;288(43):31019-29. (PMID: 24019524)
Mol Microbiol. 1993 Mar;7(6):837-45. (PMID: 7683365)
Microbiol Resour Announc. 2020 Dec 10;9(50):. (PMID: 33303657)
J Bacteriol. 1989 Dec;171(12):6617-24. (PMID: 2592344)
Nat Prod Rep. 2019 Sep 1;36(9):1281-1294. (PMID: 31453623)
Curr Opin Chem Biol. 2011 Feb;15(1):137-43. (PMID: 21111669)
Mar Drugs. 2019 Nov 25;17(12):. (PMID: 31775228)
Nat Commun. 2016 Jun 02;7:11605. (PMID: 27251447)
Nat Prod Rep. 2015 Jun;32(6):811-40. (PMID: 25798711)
Genes Dev. 1992 Jan;6(1):135-48. (PMID: 1370426)
Nat Rev Microbiol. 2015 Aug;13(8):509-23. (PMID: 26119570)
Dev Cell. 2003 May;4(5):663-72. (PMID: 12737802)
Angew Chem Int Ed Engl. 2014 Mar 10;53(11):3011-4. (PMID: 24519911)
ACS Synth Biol. 2018 Feb 16;7(2):357-362. (PMID: 29249153)
Microbiol Mol Biol Rev. 2013 Mar;77(1):112-43. (PMID: 23471619)
- Contributed Indexing:
Keywords: Streptomyces griseus; cryptic metabolism; metabologenomics; regulation; tetramic acid
- Accession Number:
0 (Anti-Bacterial Agents)
- Publication Date:
Date Created: 20210730 Date Completed: 20211209 Latest Revision: 20211214
- Publication Date:
20240829
- Accession Number:
PMC8346890
- Accession Number:
10.1073/pnas.2103515118
- Accession Number:
34326261
No Comments.