Seasonal and vertical characteristics of particulate and elemental concentrations along diverse street canyons in South India.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      The impact of street geometries on vertical dispersion of PMs (PM 2.5 and PM 10 ) in (1) non-street canyon (NSC), (2) street canyon (SC), and (3) street canyon with viaduct (SCV) was studied during four seasons. The chemical composition of the species was analysed for source apportionment. The mass concentration of PMs in canyons was in the order of SCV > SC > NSC, implicating the canyon effect. Independent of height, most of the PM concentrations in SC and SCV violated the National Ambient Air Quality Standards (NAAQS) and exceeded the World Health Organization (WHO) guidelines in all three street geometries. The vertical concentration trend of PMs was significant during winter and summer seasons in NSC and SC. The vertical trend of both PMs was significant during summer and monsoon seasons in SCV. The seasonal change in PMs' vertical trend was influenced by atmospheric stability, wind velocities associated with street morphology, and emission sources. The ratio of PM 2.5 /PM 10 indicated the dominance of PM 10 in all three locations. Among the estimated species, Fe (crustal and vehicle) and Na (sea salt and crustal) were abundant in PM 2.5 and PM 10 , respectively. Estimation of enrichment factor (EF) revealed that most of the emission sources were anthropogenic in PM 2.5 and natural in PM 10 . Principal component analysis (PCA) showed crustal/soil dust, vehicular emission, and sea salt to the common source profile for PMs. Specific contribution of smoking activity contributed to Be and Tl in PM 2.5 , which may be considered a site-specific source.
      (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Akubue (2019) Effects of street geometry on airflow regimes for natural ventilation in three different street configurations in Enugu City. Intech Open. https://doi.org/10.5772/intechopen.84786.
      Al Hanai AH, Antkiewicz DS, Hemming JDC, Shafer MM, Lai AM, Arhami M, Hosseini V, Schauer JJ (2019) Seasonal variations in the oxidative stress and inflammatory potential of PM2.5 in Tehran using an alveolar macrophage model; the role of chemical composition and sources. Environ Int 123:417–427. https://doi.org/10.1016/j.envint.2018.12.023. (PMID: 10.1016/j.envint.2018.12.023)
      Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2005) Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European coast. Atmos Environ 39:3127–3138. https://doi.org/10.1016/j.atmosenv.2005.01.048. (PMID: 10.1016/j.atmosenv.2005.01.048)
      Balakrishnan K, Ganguli B, Ghosh S, Sambandam S, Roy SS, Chatterjee A (2013) A spatially disaggregated time-series analysis of the short-term effects of particulate matter exposure on mortality in Chennai, India. Air Qual Atmos Heal 6:111–121. https://doi.org/10.1007/s11869-011-0151-6. (PMID: 10.1007/s11869-011-0151-6)
      Bandhu HK, Puri S, Garg ML, Singh B, Shahi JS, Mehta D, Swietlicki E, Dhawan DK, Mangal PC, Singh N (2000) Elemental composition and sources of air pollution in the city of Chandigarh, India, using EDXRF and PIXE techniques. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 160:126–138. https://doi.org/10.1016/S0168-583X(99)00574-1. (PMID: 10.1016/S0168-583X(99)00574-1)
      Basha S, Gaur PM, Thorat RB, Trivedi RH, Mukhopadhyay SK, Anad N, Desai S, Mody KH, Jha B (2007) Heavy metal content of suspended particulate matter at world’s largest ship-breaking yard, Alang-Sosiya, India. Water Air Soil Pollut 178:373–384. https://doi.org/10.1007/s11270-006-9205-z. (PMID: 10.1007/s11270-006-9205-z)
      Begum BA, Biswas SK, Hopke PK (2007) Source apportionment of air particulate matter by chemical mass balance (CMB) and comparison with positive matrix factorization (PMF) model. Aerosol Air Qual Res 7:446–468. https://doi.org/10.4209/aaqr.2006.10.0021. (PMID: 10.4209/aaqr.2006.10.0021)
      Brines M, Dall’Osto M, Amato F, Minguillon MC, Karanasiou A, Alastuey QX (2016) Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS. Atmos Chem Phys 16:6785–6804. https://doi.org/10.5194/acp-16-6785-2016. (PMID: 10.5194/acp-16-6785-2016)
      Chan LY, Kwok WS (2000) Vertical dispersion of suspended particulates in urban area of Hong Kong. Atmos Environ 34:4403–4412. https://doi.org/10.1016/S1352-2310(00)00181-3. (PMID: 10.1016/S1352-2310(00)00181-3)
      Charron A, Harrison RM (2005) Fine (PM2.5) and coarse (PM2.5-10) particulate matter on a heavily trafficked London highway: sources and processes. Environ Sci Technol 39:7768–7776. (PMID: 10.1021/es050462i)
      Chen Y, Jha S, Raut A, Zhang W, Liang H (2020) Performance characteristics of lubricants in electric and hybrid vehicles: a review of current and future needs. Front Mech Eng 6:1–19. https://doi.org/10.3389/fmech.2020.571464. (PMID: 10.3389/fmech.2020.571464)
      Cheng Y, Lee SC, Gao Y, Cui L, Deng W, Cao J, Shen Z, Sun J (2015) Real-time measurements of PM2.5, PM10-2.5, and BC in an urban street canyon. Particuology 20:134–140. https://doi.org/10.1016/j.partic.2014.08.006. (PMID: 10.1016/j.partic.2014.08.006)
      Chithra VS, Shiva Nagendra SM (2013) Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmos Environ 77:579–587. https://doi.org/10.1016/j.atmosenv.2013.05.044. (PMID: 10.1016/j.atmosenv.2013.05.044)
      Crilley LR, Lucarelli F, Bloss WJ, Harrison RM, Beddows DC, Calzolai G, Nava S, Valli G, Bernardoni V, Vechhi R (2017) Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ Pollut 220:766–778. https://doi.org/10.1016/j.envpol.2016.06.002. (PMID: 10.1016/j.envpol.2016.06.002)
      Dahiya S, Brigden K, Santilo D, Myllyvirta L (2016) Demystifying Delhi’s Air Metals concentrations for ambient airborne particulates (PM 2.5) collected inside schools across Delhi, India. Indian Environmental Portal. http://www.indiaenvironmentportal.org.in/files/file/GP_CAN_ReportHeavyMetals.pdf.
      Das R, Khezri B, Srivastava B, Datta S, Sikdar PK, Webster RD, Wang X (2015) Trace element composition of PM2.5 and PM10 from Kolkata–a heavily polluted Indian metropolis. Atmos Pollut Res 6:742–750. https://doi.org/10.5094/APR.2015.083. (PMID: 10.5094/APR.2015.083)
      Dong J, Tan Z, Xiao Y, Tu J (2017) Seasonal changing effect on airflow and pollutant dispersion characteristics in urban street canyons. Atmosphere (Basel) 8. https://doi.org/10.3390/atmos8030043.
      Drago G, Perrino C, Canepari S, Ruggieri S, L’Abbate L, LongoV CP, Frasca D, Balzan M, Cuttitta G, Scaccianoce G, Piva G, Bucchieri S, Melis M, Viegi G, Cibella F (2018) Relationship between domestic smoking and metals and rare earth elements concentration in indoor PM2.5. Environ Res 165:71–80. https://doi.org/10.1016/j.envres.2018.03.026. (PMID: 10.1016/j.envres.2018.03.026)
      Fang F, Wang Q, Liu R, Ma Z, Hao Q (2001) Atmospheric particulate mercury in Changchun City, China. Atmos Environ 35:4265–4272. https://doi.org/10.1016/S1352-2310(01)00203-5. (PMID: 10.1016/S1352-2310(01)00203-5)
      Gao Y, Wang Z, Lu QC, Liu C, Peng ZR, Yu Y (2017) Prediction of vertical PM2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model. Front Earth Sci 11:347–360. https://doi.org/10.1007/s11707-016-0593-0. (PMID: 10.1007/s11707-016-0593-0)
      Ghosh S, Rabha R, Chowdhury M, Padhy PK (2018) Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India. Chemosphere 207:626–636. https://doi.org/10.1016/j.chemosphere.2018.05.133. (PMID: 10.1016/j.chemosphere.2018.05.133)
      Goldmen L, Schafer A (2011) Goldmans Cecil medicine, 24th edn. Saunders, Elsevier.
      Gu J, Bai Z, Li W, Wu L, Liu A, Dong H, Xie Y (2011) Chemical composition of PM2.5 during winter in Tianjin, China. Particuology 9:215–221. https://doi.org/10.1016/j.partic.2011.03.001. (PMID: 10.1016/j.partic.2011.03.001)
      Gulia S, Nagendra SMS, Khare M (2017) Extreme events of reactive ambient air pollutants and their distribution pattern at urban hotspots. Aerosol Air Qual Res 17:394–405. https://doi.org/10.4209/aaqr.2016.06.0273. (PMID: 10.4209/aaqr.2016.06.0273)
      Gummeneni S, Yusup YB, Chavali M, Samadi SZ (2011) Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmos Res 101:752–764. https://doi.org/10.1016/j.atmosres.2011.05.002. (PMID: 10.1016/j.atmosres.2011.05.002)
      Guttikunda SK, Goel R, Mohan D, Tiwari G, Gadepalli R (2015) Particulate and gaseous emissions in two coastal cities—Chennai and Vishakhapatnam, India. Air Qual Atmos Heal 8:559–572. https://doi.org/10.1007/s11869-014-0303-6. (PMID: 10.1007/s11869-014-0303-6)
      Hang J, Xian Z, Wang D, Mak CM, Wang B, Fan Y (2018) The impacts of viaduct settings and street aspect ratios on personal intake fraction in three-dimensional urban-like geometries. Build Environ 143:138–162. https://doi.org/10.1016/j.buildenv.2018.07.001. (PMID: 10.1016/j.buildenv.2018.07.001)
      Hao Y, Deng S, Yang Y, Song W, Tong H, Qiu Z (2019) Chemical composition of particulate matter from traffic emissions in a road tunnel in Xi’an, China. Aerosol Air Qual Res 19:234–246. https://doi.org/10.4209/aaqr.2018.04.0131. (PMID: 10.4209/aaqr.2018.04.0131)
      He L, Hang J, Wang X, Lin B, Li X, Lan G (2017) Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings. Sci Total Environ 584–585:189–206. https://doi.org/10.1016/j.scitotenv.2017.01.138. (PMID: 10.1016/j.scitotenv.2017.01.138)
      Ho CC, Chen YC, Yet SF, Weng CY, Tsai HT, Hsu JF, Lin P (2020) Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. Sci Total Environ:719. https://doi.org/10.1016/j.scitotenv.2020.137243.
      Hvidtfeldt UA, Sørensen M, Geels C, Ketzel M, Khan J, Tjønneland A, Overvad K, Brandt J, Raaschou-Nielsen O (2019) Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ Int 123:265–272. https://doi.org/10.1016/J.ENVINT.2018.12.010. (PMID: 10.1016/J.ENVINT.2018.12.010)
      Janhäll S, Molnár P, Hallquist M (2003) Vertical distribution of air pollutants at the Gustavii Cathedral in Göteborg, Sweden. Atmos Environ 37:209–217. https://doi.org/10.1016/S1352-2310(02)00858-0. (PMID: 10.1016/S1352-2310(02)00858-0)
      Jeong CH, McGuire ML, Herod D, Dann T, Dabek-Zlotorzynska E, Wang D, Ding L, Celo V, Mathieu D, Evans G (2011) Receptor model based identification of PM2.5 sources in Canadian cities. Atmos Pollut Res 2:158–171. https://doi.org/10.5094/APR.2011.021. (PMID: 10.5094/APR.2011.021)
      Kondo H, Tomizuka T (2009) A numerical experiment of roadside diffusion under traffic-produced flow and turbulence. Atmos Environ 43:4137–4147. https://doi.org/10.1016/j.atmosenv.2009.05.047. (PMID: 10.1016/j.atmosenv.2009.05.047)
      Kothai P, Saradhi IV, Pandit GG, Markwitz A, Puranik VD (2011) Chemical characterization and source identification of particulate matter at an urban site of Navi Mumbai, India. Aerosol Air Qual Res 11:560–569. https://doi.org/10.4209/aaqr.2011.02.0017. (PMID: 10.4209/aaqr.2011.02.0017)
      Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407:6196–6204. https://doi.org/10.1016/j.scitotenv.2009.08.050. (PMID: 10.1016/j.scitotenv.2009.08.050)
      Kumar P, Fennell P, Britter R (2008) Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Sci Total Environ 402:82–94. https://doi.org/10.1016/j.scitotenv.2008.04.032. (PMID: 10.1016/j.scitotenv.2008.04.032)
      Li X, Wang J, Tu X, Liu W, Huang Z (2007) Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai, China. Sci Total Environ 378:306–316. (PMID: 10.1016/j.scitotenv.2007.02.040)
      Lou C, Liu H, Li Y, Peng Y, Wang J, Dai L (2017) Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China. Environ Monit Assess 189. https://doi.org/10.1007/s10661-017-6281-z.
      Manousakas M, Papaefthymiou H, Eleftheriadis K, Katsanou K (2014) Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS. Sci Total Environ 493:694–700. https://doi.org/10.1016/j.scitotenv.2014.06.043. (PMID: 10.1016/j.scitotenv.2014.06.043)
      Massey DD, Kulshrestha A, Taneja A (2013) Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmos Environ 67:278–286. https://doi.org/10.1016/j.atmosenv.2012.11.002. (PMID: 10.1016/j.atmosenv.2012.11.002)
      Micallef A, Colls JJ (1998) Short communication variation in airborne particulate matter concentration over the first three metres from ground in a street canyon: implications for human exposure. 32:3795–3799.
      Morawska L, Thomas S, Gilbert D, Greenaway C, Rijinders E (1999) A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmos Environ 33:1261–1274. https://doi.org/10.1016/S1352-2310(98)00266-0. (PMID: 10.1016/S1352-2310(98)00266-0)
      Muránszky G, Ovari M, Virág I, Csiba P, Dobai R, Zaray G (2011) Chemical characterization of PM10 fractions of urban aerosol. Microchem J 98:1–10. https://doi.org/10.1016/j.microc.2010.10.002. (PMID: 10.1016/j.microc.2010.10.002)
      Muthulingam U, Thangavel S (2012) Density, diversity and richness of woody plants in urban green spaces: a case study in Chennai metropolitan city. Urban For Urban Green 11:450–459. https://doi.org/10.1016/j.ufug.2012.08.003. (PMID: 10.1016/j.ufug.2012.08.003)
      Nayebare SR, Aburizaiza OS, Khwaja HA, Siddique A, Hussain MM, Zeb J, Khatib F, Carpenter DO, Blake DR (2016) Chemical characterization and source apportionment of PM2.5 in Rabigh, Saudi Arabia. Aerosol Air Qual Res 16:3114–3129. https://doi.org/10.4209/aaqr.2015.11.0658. (PMID: 10.4209/aaqr.2015.11.0658)
      Pant P, Baker SJ, Shukla A, Maikawa C, Pollitt KJG, Harrison RM (2015) The PM10 fraction of road dust in the UK and India: characterization, source profiles and oxidative potential. Sci Total Environ 530–531:445–452. https://doi.org/10.1016/j.scitotenv.2015.05.084. (PMID: 10.1016/j.scitotenv.2015.05.084)
      Pateraki S, Manousakas M, Bairachtari K, Kantarelou V, Eleftheriadis K, Vasilakos C, Assimakopoulos VD, Maggos T (2019) The traffic signature on the vertical PM profile: environmental and health risks within an urban roadside environment. Sci Total Environ 646:448–459. https://doi.org/10.1016/j.scitotenv.2018.07.289. (PMID: 10.1016/j.scitotenv.2018.07.289)
      Pervez S, Chakrabarty RK, Dewangan S, Watson JG, Chow JC, Matawle JL (2016) Chemical speciation of aerosols and air quality degradation during the festival of lights (Diwali). Atmos Pollut Res 7:92–99. https://doi.org/10.1016/j.apr.2015.09.002. (PMID: 10.1016/j.apr.2015.09.002)
      Pulikesi M, Baskaralingam P, Elango D, Rayudu VN, Ramamurthi V, Sivanesan S (2006) Air quality monitoring in Chennai, India, in the summer of 2005. J Hazard Mater 136:589–596. https://doi.org/10.1016/j.jhazmat.2005.12.039. (PMID: 10.1016/j.jhazmat.2005.12.039)
      Qin Y, Kot SC (1993) Dispersion of vehicular emission in street canyons, Guangzhou City, South China (P.R.C.). Atmos Environ Part B, Urban Atmos 27:283–291. https://doi.org/10.1016/0957-1272(93)90023-Y. (PMID: 10.1016/0957-1272(93)90023-Y)
      Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz CR, Cots N, Massague G, Puig O (2001) PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos Environ 35:6407–6419. (PMID: 10.1016/S1352-2310(01)00361-2)
      Rahn KA (1976) Silicon and aluminum in atmospheric aerosols: Crust-air fractionation? Atmos Environ 10:597–601. (PMID: 10.1016/0004-6981(76)90044-5)
      Reddy TVR, Mehta SK, Ananthavel A, Ali S, Annamalai V, Rao DN (2021) Seasonal characteristics of sea breeze and thermal internal boundary layer over Indian east coast region. Meteorog Atmos Phys 133:217–232. https://doi.org/10.1007/s00703-020-00746-1. (PMID: 10.1007/s00703-020-00746-1)
      Sasaki K, Sakamoto K (2005) Vertical differences in the composition of PM10 and PM 2.5 in the urban atmosphere of Osaka, Japan. Atmos Environ 39:7240–7250. https://doi.org/10.1016/j.atmosenv.2005.09.004. (PMID: 10.1016/j.atmosenv.2005.09.004)
      Sharma VK, Patil RS (1991) In situ measurements of atmospheric aerosols in an industrial region of Bombay. J Aerosol Sci 22:501–507. https://doi.org/10.1016/0021-8502(91)90007-5. (PMID: 10.1016/0021-8502(91)90007-5)
      Sharma AR, Kharol SK, Badarinath KVS (2010) Influence of vehicular traffic on urban air quality - a case study of Hyderabad, India. Transp Res Part D Transp Environ 15:154–159. https://doi.org/10.1016/j.trd.2009.11.001. (PMID: 10.1016/j.trd.2009.11.001)
      Sharma SK, Mandal TK, Saxena M, Rashmi R, Sharma A, Gautam R (2013) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Clim 10:656–670. https://doi.org/10.1016/j.uclim.2013.11.002. (PMID: 10.1016/j.uclim.2013.11.002)
      Sharma SK, Sharma A, Saxena M, Choudhary N, Masiwal R, Mandal TK, Sharma C (2015) Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi, India. Atmos Pollut Res 7:110–121. https://doi.org/10.1016/j.apr.2015.08.002. (PMID: 10.1016/j.apr.2015.08.002)
      Smolka-Danielowska D, Fiedor D (2018) Potentially toxic elements in fly ash dependently of applied technology of hard coal combustion. Environ Sci Pollut Res 25:25091–25097. https://doi.org/10.1007/s11356-018-2548-3. (PMID: 10.1007/s11356-018-2548-3)
      Song Y, Tang X, Xie S, Zhang Y, Wei Y, Zhang M, Zeng L, Lu S (2007) Source apportionment of PM2.5 in Beijing in 2004. J Hazard Mater 146:124–130. https://doi.org/10.1016/j.jhazmat.2006.11.058. (PMID: 10.1016/j.jhazmat.2006.11.058)
      Srimuruganandam B, Shiva Nagendra SM (2011) Characteristics of particulate matter and heterogeneous traffic in the urban area of India. Atmos Environ 45:3091–3102. https://doi.org/10.1016/j.atmosenv.2011.03.014. (PMID: 10.1016/j.atmosenv.2011.03.014)
      Srimuruganandam B, Shiva Nagendra SM (2012) Application of positive matrix factorization in characterization of PM10and PM2.5emission sources at urban roadside. Chemosphere 88:120–130. https://doi.org/10.1016/j.chemosphere.2012.02.083. (PMID: 10.1016/j.chemosphere.2012.02.083)
      Sun Q, Liu C, Chen R, Wang C, Li J, Sun J, Kan H, Cao J, Bai H (2019) Association of fine particulate matter on acute exacerbation of chronic obstructive pulmonary disease in Yancheng, China. Sci Total Environ 650:1665–1670. https://doi.org/10.1016/j.scitotenv.2018.09.278. (PMID: 10.1016/j.scitotenv.2018.09.278)
      Tominaga Y, Stathopoulos T (2011) CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS. J Wind Eng Ind Aerodyn 99:340–348. https://doi.org/10.1016/j.jweia.2010.12.005. (PMID: 10.1016/j.jweia.2010.12.005)
      Tripathee L, Kang S, Huang J, Sharma CM, Sillanpaa M, Guo J, Paudyal R (2014) Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmos Res 95:231–238. https://doi.org/10.1016/j.atmosenv.2014.06.043. (PMID: 10.1016/j.atmosenv.2014.06.043)
      Tripathee L, Guo J, Kang S, Paudyal R, Sharma CM, Huang J, Chen P, Ghimire PS, Sigdel M, Sillanpaa M (2020) Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: the semi-arid mountain valley of the central Himalaya. Atmos Res 234:104691. https://doi.org/10.1016/j.atmosres.2019.104691. (PMID: 10.1016/j.atmosres.2019.104691)
      Tripathi RM, Vinod Kumar A, Manikandan ST, Bhalke S, Mahadevan TN, Puranik VD (2004) Vertical distribution of atmospheric trace metals and their sources at Mumbai, India. Atmos Environ 38:135–146. https://doi.org/10.1016/j.atmosenv.2003.09.006. (PMID: 10.1016/j.atmosenv.2003.09.006)
      Vardoulakis S, Gonzalez-Flesca N, Fisher BEA (2002) Assessment of traffic-related air pollution in two street canyons in Paris: implications for exposure studies. Atmos Environ 36:1025–1039. https://doi.org/10.1016/S1352-2310(01)00288-6. (PMID: 10.1016/S1352-2310(01)00288-6)
      Wu Y, Hao J, Fu L, Wang Z, Tang U (2002) Vertical and horizontal profiles of airborne particulate matter near major roads in Macao, China. Atmos Environ 36:4907–4918. https://doi.org/10.1016/S1352-2310(02)00467-3. (PMID: 10.1016/S1352-2310(02)00467-3)
      Xie X, Huang Z, Wang J, Xie Z (2005) The impact of solar radiation and street layout on pollutant dispersion in street canyon. Build Environ 40:201–212. https://doi.org/10.1016/j.buildenv.2004.07.013. (PMID: 10.1016/j.buildenv.2004.07.013)
      Yubero E, Galindo N, Nicolás JF, Crespo J, Calzolai G, Lucarelli F (2015) Temporal variations of PM1 major components in an urban street canyon. Environ Sci Pollut Res 22:13328–13335. https://doi.org/10.1007/s11356-015-4599-z. (PMID: 10.1007/s11356-015-4599-z)
      Zhang C, Wen M, Zeng J, Zhang G, Fang H, Li Y (2012) Modeling the impact of the viaduct on particles dispersion from vehicle exhaust in street canyons. Sci China Technol Sci 55:48–55. https://doi.org/10.1007/s11431-011-4610-y. (PMID: 10.1007/s11431-011-4610-y)
      Zhengtong L, Cunjin C, Xiaoming H, Hongwen D, Weijie F, Tingzhen M (2018) Numerical simulation on the effect of viaduct settings on the air flow and pollutant dispersion in the deep street canyon. Res Environ Sci 31:254–264. https://doi.org/10.13198/j.issn.1001-6929 2017. 03. 73. (PMID: 10.13198/j.issn.1001-6929)
    • Contributed Indexing:
      Keywords: Elemental composition; Particulate pollutants; Season; Street geometry; Urban; Vertical profile
    • Accession Number:
      0 (Air Pollutants)
      0 (Dust)
      0 (Vehicle Emissions)
      0 (Coal)
      0 (Particulate Matter)
    • Publication Date:
      Date Created: 20210709 Date Completed: 20221121 Latest Revision: 20221121
    • Publication Date:
      20240829
    • Accession Number:
      10.1007/s11356-021-15272-9
    • Accession Number:
      34240305