Polymorphisms in MHC class I molecules influence their interactions with components of the antigen processing and presentation pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Aflalo A;Aflalo A; Boyle LH; Boyle LH
  • Source:
    International journal of immunogenetics [Int J Immunogenet] 2021 Aug; Vol. 48 (4), pp. 317-325. Date of Electronic Publication: 2021 Jun 26.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Blackwell Pub Country of Publication: England NLM ID: 101232337 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-313X (Electronic) Linking ISSN: 17443121 NLM ISO Abbreviation: Int J Immunogenet Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Blackwell Pub., c2005-
    • Subject Terms:
    • Abstract:
      MHC class I (MHC-I) molecules undergo an intricate folding process in order to pick up antigenic peptide to present to the immune system. In recent years, the discovery of a new peptide editor for MHC-I has added an extra level of complexity in our understanding of how peptide presentation is regulated. On top of this, the incredible diversity in MHC-I molecules leads to significant variation in the interaction between MHC-I and components of the antigen processing and presentation pathway. Here, we review our current understanding regarding how polymorphisms in human leukocyte antigen class I molecules influence their interactions with key components of the antigen processing and presentation pathway. A deeper understanding of this may offer new insights regarding how apparently subtle variation in MHC-I can have a significant impact on susceptibility to disease.
      (© 2021 John Wiley & Sons Ltd.)
    • References:
      Abele, R., & Tampe, R. (2018). Moving the cellular peptidome by transporters. Frontiers in Cell and Developmental Biology, 6, 43. https://doi.org/10.3389/fcell.2018.00043.
      Akram, A., Lin, A., Gracey, E., Streutker, C. J., & Inman, R. D. (2014). HLA-B27, but not HLA-B7, immunodominance to influenza is ERAP dependent. The Journal of Immunology, 192(12), 5520-5528. https://doi.org/10.4049/jimmunol.1400343.
      Arshad, N., & Cresswell, P. (2018). Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. Journal of Biological Chemistry, 293(25), 9555-9569. https://doi.org/10.1074/jbc.RA118.002836.
      Bashirova, A. A., Viard, M., Naranbhai, V., Grifoni, A., Garcia-Beltran, W., Akdag, M., Yuki, Y., Gao, X., O'hUigin, C., Raghavan, M., Wolinsky, S., Bream, J. H., Duggal, P., Martinson, J., Michael, N. L., Kirk, G. D., Buchbinder, S. P., Haas, D., Goedert, J. J., … Carrington, M. (2020). HLA tapasin independence: Broader peptide repertoire and HIV control. Proceedings of the National Academy of Sciences USA, 117(45), 28232-28238. https://doi.org/10.1073/pnas.2013554117.
      Blanchard, N., Kanaseki, T., Escobar, H., Delebecque, F., Nagarajan, N. A., Reyes-Vargas, E., Crockett, D. K., Raulet, D. H., Delgado, J. C., & Shastri, N. (2010). Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. The Journal of Immunology, 184(6), 3033-3042. https://doi.org/10.4049/jimmunol.0903712.
      Blees, A., Januliene, D., Hofmann, T., Koller, N., Schmidt, C., Trowitzsch, S., Moeller, A., & Tampé, R. (2017). Structure of the human MHC-I peptide-loading complex. Nature, 551(7681), 525-528. https://doi.org/10.1038/nature24627.
      Blum, J. S., Wearsch, P. A., & Cresswell, P. (2013). Pathways of antigen processing. Annual Review of Immunology, 31, 443-473. https://doi.org/10.1146/annurev-immunol-032712-095910.
      Bowness, P. (2015). Hla-B27. Annual Review of Immunology, 33, 29-48. https://doi.org/10.1146/annurev-immunol-032414-112110.
      Boyle, L. H., Hermann, C., Boname, J. M., Porter, K. M., Patel, P. A., Burr, M. L., Duncan, L. M., Harbour, M. E., Rhodes, D. A., Skjødt, K., Lehner, P. J., & Trowsdale, J. (2013). Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proceedings of the National Academy of Sciences USA, 110(9), 3465-3470. https://doi.org/10.1073/pnas.1222342110.
      Chang, C. C., Campoli, M., & Ferrone, S. (2003). HLA class I defects in malignant lesions: What have we learned? The Keio Journal of Medicine, 52(4), 220-229. https://doi.org/10.2302/kjm.52.220.
      Chang, S. C., Momburg, F., Bhutani, N., & Goldberg, A. L. (2005). The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism. Proceedings of the National Academy of Sciences USA, 102(47), 17107-17112. https://doi.org/10.1073/pnas.0500721102.
      Chen, H. L., Gabrilovich, D., Tampe, R., Girgis, K. R., Nadaf, S., & Carbone, D. P. (1996). A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nature Genetics, 13(2), 210-213. https://doi.org/10.1038/ng0696-210.
      Chen, H., Li, L., Weimershaus, M., Evnouchidou, I., van Endert, P., & Bouvier, M. (2016). ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications for understanding peptide editing. Scientific Reports, 6, 28902. https://doi.org/10.1038/srep28902.
      Chen, M., & Bouvier, M. (2007). Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. The EMBO Journal, 26(6), 1681-1690. https://doi.org/10.1038/sj.emboj.7601624.
      Chowell, D., Krishna, C., Pierini, F., Makarov, V., Rizvi, N. A., Kuo, F., Morris, L. G. T., Riaz, N., Lenz, T. L., & Chan, T. A. (2019). Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nature Medicine, 25(11), 1715-1720. https://doi.org/10.1038/s41591-019-0639-4.
      Chowell, D., Morris, L. G. T., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., Riaz, N., Greenbaum, B., Carroll, J., Garon, E., Hyman, D. M., Zehir, A., Solit, D., Berger, M., Zhou, R., Rizvi, N. A., & Chan, T. A. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 359(6375), 582-587. https://doi.org/10.1126/science.aao4572.
      Cummings, A. L., Gukasyan, J., Lu, H. Y., Grogan, T., Sunga, G., Fares, C. M., Hornstein, N., Zaretsky, J., Carroll, J., Bachrach, B., Akingbemi, W. O., Li, D., Noor, Z., Lisberg, A., Goldman, J. W., Elashoff, D., Bui, A. A. T., Ribas, A., Dubinett, S. M., … Garon, E. B. (2020). Mutational landscape influences immunotherapy outcomes among patients with non-small-cell lung cancer with human leukocyte antigen supertype B44. Nature Cancer, 1(12), 1167-1175. https://doi.org/10.1038/s43018-020-00140-1.
      Denzin, L. K., & Cresswell, P. (1995). HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell, 82(1), 155-165. https://doi.org/10.1016/0092-8674(95)90061-6.
      Dersh, D., Holly, J., & Yewdell, J. W. (2021). A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nature Reviews Immunology, 21(2), 116-128. https://doi.org/10.1038/s41577-020-0390-6.
      Evnouchidou, I., & van Endert, P. (2019). Peptide trimming by endoplasmic reticulum aminopeptidases: Role of MHC class I binding and ERAP dimerization. Human Immunology, 80(5), 290-295. https://doi.org/10.1016/j.humimm.2019.01.003.
      Ferreiro-Iglesias, A., Lesseur, C., McKay, J., Hung, R. J., Han, Y., Zong, X., Christiani, D., Johansson, M., Xiao, X., Li, Y., Qian, D. C., Ji, X., Liu, G., Caporaso, N., Scelo, G., Zaridze, D., Mukeriya, A., Kontic, M., Ognjanovic, S., … Brennan, P. (2018). Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nature Communications, 9(1), 3927. https://doi.org/10.1038/s41467-018-05890-2.
      Fleischmann, G., Fisette, O., Thomas, C., Wieneke, R., Tumulka, F., Schneeweiss, C., Springer, S., Schäfer, L. V., & Tampé, R. (2015). Mechanistic basis for epitope proofreading in the peptide-loading complex. The Journal of Immunology, 195(9), 4503-4513. https://doi.org/10.4049/jimmunol.1501515.
      Friedrich, M., Jasinski-Bergner, S., Lazaridou, M.-F., Subbarayan, K., Massa, C., Tretbar, S., Mueller, A., Handke, D., Biehl, K., Bukur, J., Donia, M., Mandelboim, O., & Seliger, B. (2019). Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunology, Immunotherapy, 68(10), 1689-1700. https://doi.org/10.1007/s00262-019-02373-1.
      Gadola, S. D., Moins-Teisserenc, H. T., Trowsdale, J., Gross, W. L., & Cerundolo, V. (2000). TAP deficiency syndrome. Clinical and Experimental Immunology, 121(2), 173-178. https://doi.org/10.1046/j.1365-2249.2000.01264.x.
      Gandhi, A., Lakshminarasimhan, D., Sun, Y., & Guo, H. C. (2011). Structural insights into the molecular ruler mechanism of the endoplasmic reticulum aminopeptidase ERAP1. Scientific Reports, 1, 186. https://doi.org/10.1038/srep00186.
      Gao, B., Adhikari, R., Howarth, M., Nakamura, K., Gold, M. C., Hill, A. B., Knee, R., Michalak, M., & Elliott, T. (2002). Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity, 16(1), 99-109. https://doi.org/10.1016/S1074-7613(01)00260-6.
      Garbi, N., Tan, P., Diehl, A. D., Chambers, B. J., Ljunggren, H. G., Momburg, F., & Hammerling, G. J. (2000). Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nature Immunology, 1(3), 234-238. https://doi.org/10.1038/79775.
      Geng, J., Altman, J. D., Krishnakumar, S., & Raghavan, M. (2018). Empty conformers of HLA-B preferentially bind CD8 and regulate CD8(+) T cell function. Elife, 7, e36341. https://doi.org/10.7554/eLife.36341.
      Geng, J., Zaitouna, A. J., & Raghavan, M. (2018). Selected HLA-B allotypes are resistant to inhibition or deficiency of the transporter associated with antigen processing (TAP). PLoS Pathogens, 14(7), e1007171. https://doi.org/10.1371/journal.ppat.1007171.
      Hammer, G. E., Gonzalez, F., Champsaur, M., Cado, D., & Shastri, N. (2006). The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nature Immunology, 7(1), 103-112. https://doi.org/10.1038/ni1286.
      Hansen, T. H., & Bouvier, M. (2009). MHC class I antigen presentation: Learning from viral evasion strategies. Nature Reviews Immunology, 9(7), 503-513. https://doi.org/10.1038/nri2575.
      Hermann, C., van Hateren, A., Trautwein, N., Neerincx, A., Duriez, P. J., Stevanović, S., Trowsdale, J., Deane, J. E., Elliott, T., & Boyle, L. H. (2015). TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. Elife, 4, e09617. https://doi.org/10.7554/eLife.09617.
      Ilca, F. T., Drexhage, L. Z., Brewin, G., Peacock, S., & Boyle, L. H. (2019). Distinct polymorphisms in HLA class I molecules govern their susceptibility to peptide editing by TAPBPR. Cell Reports, 29(6), 1621-1632 e1623. https://doi.org/10.1016/j.celrep.2019.09.074.
      Ilca, F. T., Neerincx, A., Hermann, C., Marcu, A., Stevanovic, S., Deane, J. E., & Boyle, L. H. (2018). TAPBPR mediates peptide dissociation from MHC class I using a leucine lever. Elife, 7, e40126. https://doi.org/10.7554/eLife.40126.
      Ilca, F. T., Neerincx, A., Wills, M. R., de la Roche, M., & Boyle, L. H. (2018). Utilizing TAPBPR to promote exogenous peptide loading onto cell surface MHC I molecules. Proceedings of the National Academy of Sciences USA, 115(40), E9353-E9361. https://doi.org/10.1073/pnas.1809465115.
      Ilca, T., & Boyle, L. H. (2020). The ins and outs of TAPBPR. Current Opinion in Immunology, 64, 146-151. https://doi.org/10.1016/j.coi.2020.06.004.
      Illing, P. T., Vivian, J. P., Dudek, N. L., Kostenko, L., Chen, Z., Bharadwaj, M., Miles, J. J., Kjer-Nielsen, L., Gras, S., Williamson, N. A., Burrows, S. R., Purcell, A. W., Rossjohn, J., & McCluskey, J. (2012). Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature, 486(7404), 554-558. https://doi.org/10.1038/nature11147.
      Ito, Y., Takeda, Y., Seko, A., Izumi, M., & Kajihara, Y. (2015). Functional analysis of endoplasmic reticulum glucosyltransferase (UGGT): Synthetic chemistry's initiative in glycobiology. Seminars in Cell & Developmental Biology, 41, 90-98. https://doi.org/10.1016/j.semcdb.2014.11.011.
      Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A., & Williams, D. B. (1994). Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science, 263(5145), 384-387. https://doi.org/10.1126/science.8278813.
      Jhunjhunwala, S., Hammer, C., & Delamarre, L. (2021). Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nature Reviews Cancer, 21(5), 298-312. https://doi.org/10.1038/s41568-021-00339-z.
      Jiang, J., Natarajan, K., Boyd, L. F., Morozov, G. I., Mage, M. G., & Margulies, D. H. (2017). Crystal structure of a TAPBPR-MHC I complex reveals the mechanism of peptide editing in antigen presentation. Science, 358(6366), 1064-1068. https://doi.org/10.1126/science.aao5154.
      Kelly, A., Powis, S. H., Kerr, L.-A., Mockridge, I., Elliott, T., Bastin, J., Uchanska-Ziegler, B., Ziegler, A., Trowsdale, J., & Townsend, A. (1992). Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature, 355(6361), 641-644. https://doi.org/10.1038/355641a0.
      Kloetzel, P. M. (2001). Antigen processing by the proteasome. Nature Reviews Molecular Cell Biology, 2(3), 179-187. https://doi.org/10.1038/35056572.
      Kochan, G., Krojer, T., Harvey, D., Fischer, R., Chen, L., Vollmar, M., von Delft, F., Kavanagh, K. L., Brown, M. A., Bowness, P., Wordsworth, P., Kessler, B. M., & Oppermann, U. (2011). Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proceedings of the National Academy of Sciences USA, 108(19), 7745-7750. https://doi.org/10.1073/pnas.1101262108.
      Lampen, M. H., Verweij, M. C., Querido, B., van der Burg, S. H., Wiertz, E. J., & van Hall, T. (2010). CD8+ T cell responses against TAP-inhibited cells are readily detected in the human population. The Journal of Immunology, 185(11), 6508-6517. https://doi.org/10.4049/jimmunol.1001774.
      Leone, P., Shin, E. C., Perosa, F., Vacca, A., Dammacco, F., & Racanelli, V. (2013). MHC class I antigen processing and presenting machinery: Organization, function, and defects in tumor cells. Journal of the National Cancer Institute, 105(16), 1172-1187. https://doi.org/10.1093/jnci/djt184.
      Lin, M., Tseng, H.-K., Trejaut, J. A., Lee, H.-L., Loo, J.-H., Chu, C.-C., Chen, P.-J., Su, Y.-W., Lim, K. H., Tsai, Z.-U., Lin, R.-Y., Lin, R.-S., & Huang, C.-H. (2003). Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Medical Genetics, 4, 9. https://doi.org/10.1186/1471-2350-4-9.
      Matzaraki, V., Kumar, V., Wijmenga, C., & Zhernakova, A. (2017). The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biology, 18(1), 76. https://doi.org/10.1186/s13059-017-1207-1.
      McGonagle, D., Aydin, S. Z., Gul, A., Mahr, A., & Direskeneli, H. (2015). 'MHC-I-opathy'-unified concept for spondyloarthritis and Behcet disease. Nature Reviews Rheumatology, 11(12), 731-740. https://doi.org/10.1038/nrrheum.2015.147.
      Meyer, T. H., van Endert, P. M., Uebel, S., Ehring, B., & Tampe, R. (1994). Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Letters, 351(3), 443-447. https://doi.org/10.1016/0014-5793(94)00908-2.
      Morozov, G. I., Zhao, H., Mage, M. G., Boyd, L. F., Jiang, J., Dolan, M. A., Venna, R., Norcross, M. A., McMurtrey, C. P., Hildebrand, W., Schuck, P., Natarajan, K., & Margulies, D. H. (2016). Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proceedings of the National Academy of Sciences USA, 113(8), E1006-E1015. https://doi.org/10.1073/pnas.1519894113.
      Nagarajan, N. A., de Verteuil, D. A., Sriranganadane, D., Yahyaoui, W., Thibault, P., Perreault, C., & Shastri, N. (2016). ERAAP Shapes the peptidome associated with classical and nonclassical MHC class I molecules. The Journal of Immunology, 197(4), 1035-1043. https://doi.org/10.4049/jimmunol.1500654.
      Naranbhai, V., & Carrington, M. (2017). Host genetic variation and HIV disease: From mapping to mechanism. Immunogenetics, 69(8-9), 489-498. https://doi.org/10.1007/s00251-017-1000-z.
      Neefjes, J. J., Momburg, F., & Hammerling, G. J. (1993). Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science, 261(5122), 769-771. https://doi.org/10.1126/science.8342042.
      Neerincx, A., Hermann, C., Antrobus, R., van Hateren, A., Cao, H., Trautwein, N., Stevanović, S., Elliott, T., Deane, J. E., & Boyle, L. H. (2017). TAPBPR bridges UDP-glucose: Glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. Elife, 6, e23049. https://doi.org/10.7554/eLife.23049.
      Ng, M. H. L., Lau, K.-M., Li, L., Cheng, S.-H., Chan, W. Y., Hui, P. K., Zee, B., Leung, C.-B., & Sung, J. J. Y. (2004). Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. Journal of Infectious Diseases, 190(3), 515-518. https://doi.org/10.1086/421523.
      Nguyen, T. T., Chang, S.-C., Evnouchidou, I., York, I. A., Zikos, C., Rock, K. L., Goldberg, A. L., Stratikos, E., & Stern, L. J. (2011). Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nature Structural & Molecular Biology, 18(5), 604-613. https://doi.org/10.1038/nsmb.2021.
      Nossner, E., & Parham, P. (1995). Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules. Journal of Experimental Medicine, 181(1), 327-337. https://doi.org/10.1084/jem.181.1.327.
      Okada, Y., Han, B., Tsoi, L. C., Stuart, P. E., Ellinghaus, E., Tejasvi, T., Chandran, V., Pellett, F., Pollock, R., Bowcock, A. M., Krueger, G. G., Weichenthal, M., Voorhees, J. J., Rahman, P., Gregersen, P. K., Franke, A., Nair, R. P., Abecasis, G. R., Gladman, D. D., … Raychaudhuri, S. (2014). Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. American Journal of Human Genetics, 95(2), 162-172. https://doi.org/10.1016/j.ajhg.2014.07.002.
      Ortmann, B., Copeman, J., Lehner, P. J., Sadasivan, B., Herberg, J. A., Grandea, A. G., & Cresswell, P. (1997). A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science, 277(5330), 1306-1309.
      Pepelyayeva, Y., & Amalfitano, A. (2019). The role of ERAP1 in autoinflammation and autoimmunity. Human Immunology, 80(5), 302-309. https://doi.org/10.1016/j.humimm.2019.02.013.
      Pos, W., Sethi, D. K., Call, M. J., Schulze, M. S., Anders, A. K., Pyrdol, J., & Wucherpfennig, K. W. (2012). Crystal structure of the HLA-DM-HLA-DR1 complex defines mechanisms for rapid peptide selection. Cell, 151(7), 1557-1568. https://doi.org/10.1016/j.cell.2012.11.025.
      Raghavan, M. (1999). Immunodeficiency due to defective antigen processing: The molecular basis for type 1 bare lymphocyte syndrome. Journal of Clinical Investigation, 103(5), 595-596. https://doi.org/10.1172/JCI6455.
      Rizvi, S. M., Salam, N., Geng, J., Qi, Y., Bream, J. H., Duggal, P., Hussain, S. K., Martinson, J., Wolinsky, S. M., Carrington, M., & Raghavan, M. (2014). Distinct assembly profiles of HLA-B molecules. The Journal of Immunology, 192(11), 4967-4976. https://doi.org/10.4049/jimmunol.1301670.
      Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T., & Cresswell, P. (1996). Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity, 5(2), 103-114. https://doi.org/10.1016/S1074-7613(00)80487-2.
      Sagert, L., Hennig, F., Thomas, C., & Tampe, R. (2020). A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. Elife, 9, e55326. https://doi.org/10.7554/eLife.55326.
      Saric, T., Chang, S. C., Hattori, A., York, I. A., Markant, S., Rock, K. L., & Goldberg, A. L. (2002). An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nature Immunology, 3(12), 1169-1176. https://doi.org/10.1038/ni859.
      Saveanu, L., Carroll, O., Lindo, V., Del Val, M., Lopez, D., Lepelletier, Y., Greer, F., Schomburg, L., Fruci, D., Niedermann, G., & van Endert, P. M. (2005). Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nature Immunology, 6(7), 689-697. https://doi.org/10.1038/ni1208.
      Schuren, A. B., Costa, A. I., & Wiertz, E. J. (2016). Recent advances in viral evasion of the MHC Class I processing pathway. Current Opinion in Immunology, 40, 43-50. https://doi.org/10.1016/j.coi.2016.02.007.
      Serwold, T., Gaw, S., & Shastri, N. (2001). ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nature Immunology, 2(7), 644-651. https://doi.org/10.1038/89800.
      Serwold, T., Gonzalez, F., Kim, J., Jacob, R., & Shastri, N. (2002). ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature, 419(6906), 480-483. https://doi.org/10.1038/nature01074.
      Thomas, C., & Tampe, R. (2017). Structure of the TAPBPR-MHC I complex defines the mechanism of peptide loading and editing. Science, 358(6366), 1060-1064. https://doi.org/10.1126/science.aao6001.
      Tian, C., Hromatka, B. S., Kiefer, A. K., Eriksson, N., Noble, S. M., Tung, J. Y., & Hinds, D. A. (2017). Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nature Communications, 8(1), 599. https://doi.org/10.1038/s41467-017-00257-5.
      Trowsdale, J., & Knight, J. C. (2013). Major histocompatibility complex genomics and human disease. Annual Review of Genomics and Human Genetics, 14, 301-323. https://doi.org/10.1146/annurev-genom-091212-153455.
      van Endert, P. M., Tampe, R., Meyer, T. H., Tisch, R., Bach, J. F., & McDevitt, H. O. (1994). A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity, 1(6), 491-500. https://doi.org/10.1016/1074-7613(94)90091-4.
      Waage, J., Standl, M., Curtin, J. A., Jessen, L. E., Thorsen, J., Tian, C., Schoettler, N., Flores, C., Abdellaoui, A., Ahluwalia, T. S., Alves, A. C., Amaral, A. F. S., Antó, J. M., Arnold, A., Barreto-Luis, A., Baurecht, H., van Beijsterveldt, C. E. M., Bleecker, E. R., Bonàs-Guarch, S., … Bønnelykke, K. (2018). Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature Genetics, 50(8), 1072-1080. https://doi.org/10.1038/s41588-018-0157-1.
      Wang, S.-F., Chen, K.-H., Chen, M., Li, W.-Y., Chen, Y.-J., Tsao, C.-H., Yen, M.-Y., Huang, J. C., & Chen, Y.-M. (2011). Human-leukocyte antigen class I Cw 1502 and class II DR 0301 genotypes are associated with resistance to severe acute respiratory syndrome (SARS) infection. Viral Immunology, 24(5), 421-426. https://doi.org/10.1089/vim.2011.0024.
      Wearsch, P. A., & Cresswell, P. (2007). Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nature Immunology, 8(8), 873-881. https://doi.org/10.1038/ni1485.
      Wearsch, P. A., Peaper, D. R., & Cresswell, P. (2011). Essential glycan-dependent interactions optimize MHC class I peptide loading. Proceedings of the National Academy of Sciences USA, 108(12), 4950-4955. https://doi.org/10.1073/pnas.1102524108.
      Williams, A. P., Peh, C. A., Purcell, A. W., McCluskey, J., & Elliott, T. (2002). Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity, 16(4), 509-520. https://doi.org/10.1016/S1074-7613(02)00304-7.
      Wilson, E. A., Hirneise, G., Singharoy, A., & Anderson, K. S. (2021). Total predicted MHC-I epitope load is inversely associated with population mortality from SARS-CoV-2. Cell Reports Medicine, 2(3), 100221. https://doi.org/10.1016/j.xcrm.2021.100221.
      Yewdell, J. W. (2006). Confronting complexity: Real-world immunodominance in antiviral CD8+ T cell responses. Immunity, 25(4), 533-543. https://doi.org/10.1016/j.immuni.2006.09.005.
      Yewdell, J. W., Reits, E., & Neefjes, J. (2003). Making sense of mass destruction: Quantitating MHC class I antigen presentation. Nature Reviews Immunology, 3(12), 952-961. https://doi.org/10.1038/nri1250.
      York, I. A., Chang, S. C., Saric, T., Keys, J. A., Favreau, J. M., Goldberg, A. L., & Rock, K. L. (2002). The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nature Immunology, 3(12), 1177-1184. https://doi.org/10.1038/ni860.
      Zernich, D., Purcell, A. W., Macdonald, W. A., Kjer-Nielsen, L., Ely, L. K., Laham, N., Crockford, T., Mifsud, N. A., Bharadwaj, M., Chang, L., Tait, B. D., Holdsworth, R., Brooks, A. G., Bottomley, S. P., Beddoe, T., Peh, C. A., Rossjohn, J., & McCluskey, J. (2004). Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. Journal of Experimental Medicine, 200(1), 13-24. https://doi.org/10.1084/jem.20031680.
      Zhang, W., Wearsch, P. A., Zhu, Y., Leonhardt, R. M., & Cresswell, P. (2011). A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proceedings of the National Academy of Sciences USA, 108(12), 4956-4961. https://doi.org/10.1073/pnas.1102527108.
    • Grant Information:
      220012/Z/19/Z Wellcome; 219479/Z/19/Z Wellcome
    • Contributed Indexing:
      Keywords: antigens; expression; function; immunology; polymorphism
    • Accession Number:
      0 (Antigens)
      0 (Histocompatibility Antigens Class I)
      0 (Histocompatibility Antigens Class II)
      0 (Peptides)
    • Publication Date:
      Date Created: 20210627 Date Completed: 20211011 Latest Revision: 20211011
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/iji.12546
    • Accession Number:
      34176210