Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Fluorescent nanoparticles as tools in ecology and physiology.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Färkkilä SMA;Färkkilä SMA; Kiers ET; Kiers ET; Jaaniso R; Jaaniso R; Mäeorg U; Mäeorg U; Leblanc RM; Leblanc RM; Treseder KK; Treseder KK; Kang Z; Kang Z; Tedersoo L; Tedersoo L
- Source:
Biological reviews of the Cambridge Philosophical Society [Biol Rev Camb Philos Soc] 2021 Oct; Vol. 96 (5), pp. 2392-2424. Date of Electronic Publication: 2021 Jun 17.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Cambridge University Press Country of Publication: England NLM ID: 0414576 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-185X (Electronic) Linking ISSN: 00063231 NLM ISO Abbreviation: Biol Rev Camb Philos Soc Subsets: MEDLINE
- Publication Information: Original Publication: London, Cambridge University Press.
- Subject Terms:
- Abstract: Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists' tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.
(© 2021 Cambridge Philosophical Society.) - References: Afsari, H. S., Dos Santos, M. C., Lindén, S., Chen, T., Qiu, X., Van Bergen en Henegouwen, P. M. P., Jennings, T. L., Susumu, K., Medintz, I. L., Hildebrandt, N. & Miller, L. W. (2016). Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Science Advances 2, e1600265.
Alaraby, M., Demir, E., Hernández, A. & Marcos, R. (2015). Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. Science of the Total Environment 530-531, 66-75.
Alizadeh, N. & Salimi, A. (2019). Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform. Analytica Chimica Acta 1091, 40-49.
Alkahtani, M., Chen, Y., Pedraza, J. J., González, J. M., Parkinson, D. Y., Hemmer, P. R. & Liang, H. (2017). High resolution fluorescence bio-imaging upconversion nanoparticles in insects. Optics Express 25, 1030-1039.
Al-Salim, N., Barraclough, E., Burgess, E., Clothier, B., Deurer, M., Green, S., Malone, L. & Weir, G. (2011). Quantum dot transport in soil, plants, and insects. Science of the Total Environment 409, 3237-3248.
Álvarez-Diduk, R., Orozco, J. & Merkoçi, A. (2017). Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Scientific Reports 7, 976.
Ambrosone, A., Mattera, L., Marchesano, V., Quarta, A., Susha, A. S., Tino, A., Rogach, A. L. & Tortiglione, C. (2012). Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomaterials 33, 1991-2000.
Anas, N. A. A., Fen, Y. W., Omar, N. A. S., Daniyal, W. M. E. M. M., Ramdzan, N. S. M. & Saleviter, S. (2019). Development of graphene quantum dots-based optical sensor for toxic metal ion detection. Sensors (Switzerland) 19, 3850.
Asadian, E., Ghalkhani, M. & Shahrokhian, S. (2019). Electrochemical sensing based on carbon nanoparticles: a review. Sensors and Actuators, B: Chemical 293, 183-209.
Baker, S. N. & Baker, G. A. (2010). Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie - International Edition 49, 6726-6744.
Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, M. P. & Waggoner, A. S. (2004). Noninvasive imaging of quantum dots in mice. Bioconjugate Chemistry 15, 79-86.
Beloglazova, N. V., Speranskaya, E. S., De Saeger, S., Hens, Z., Abé, S. & Goryacheva, I. Y. (2012). Quantum dot based rapid tests for zearalenone detection. Analytical and Bioanalytical Chemistry 403, 3013-3024.
Beloglazova, N. V., Speranskaya, E. S., Wu, A., Wang, Z., Sanders, M., Goftman, V. V., Zhang, D., Goryacheva, I. Y. & De Saeger, S. (2014). Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosensors and Bioelectronics 62, 59-65.
Bera, D., Qian, L., Tseng, T. K. & Holloway, P. H. (2010). Quantum dots and their multimodal applications: a review. Materials 3, 2260-2345.
Bhamore, J. R., Jha, S., Park, T. J. & Kailasa, S. K. (2018). Fluorescence sensing of cu 2+ ion and imaging of fungal cell by ultra-small fluorescent carbon dots derived from Acacia concinna seeds. Sensors and Actuators, B: Chemical 277, 47-54.
Bharali, D. J., Lucey, D. W., Jayakumar, H., Pudavar, H. E. & Prasad, P. N. (2005). Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Journal of the American Chemical Society 127, 11364-11371.
Bhattacharjee, S., Rietjens, I. M. C. M., Singh, M. P., Atkins, T. M., Purkait, T. K., Xu, Z., Regli, S., Shukaliak, A., Clark, R. J., Mitchell, B. S., Alink, G. M., Marcelis, A. T. M., Fink, M. J., Veinot, J. G. C., Kauzlarich, S. M., et al. (2013). Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5, 4870-4883.
Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C. & Jana, N. R. (2013). Carbon nanoparticle-based fluorescent bioimaging probes. Scientific Reports 3, 1473.
Bian, S., Shen, C., Hua, H., Zhou, L., Zhu, H., Xi, F., Liu, J. & Dong, X. (2016). One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(II). RSC Advances 6, 69977-69983.
Biju, V., Itoh, T. & Ishikawa, M. (2010). Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews 39, 3031-3056.
Bondon, N., Raehm, L., Charnay, C., Boukherroub, R. & Durand, J. O. (2020). Nanodiamonds for bioapplications, recent developments. Journal of Materials Chemistry B 8, 10878-10896.
Boschi, F. & de Sanctis, F. (2017). Overview of the optical properties of fluorescent nanoparticles for optical imaging. European Journal of Histochemistry 61, 2830.
Bouldin, J. L., Ingle, T. M., Sengupta, A., Alexander, R., Hannigan, R. E. & Buchanan, R. A. (2008). Aqueous toxicity and food chain transfer of quantum dots™ in freshwater algae and Ceriodaphnia dubia. Environmental Toxicology and Chemistry 27, 1958-1963.
Brandt, Y. I., Mitchell, T., Smolyakov, G. A., Osiński, M. & Hartley, R. S. (2015). Quantum dot assisted tracking of the intracellular protein Cyclin E in Xenopus laevis embryos. Journal of Nanobiotechnology 13, 31.
Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016.
Brunetti, V., Chibli, H., Fiammengo, R., Galeone, A., Malvindi, M. A., Vecchio, G., Cingolani, R., Nadeau, J. L. & Pompa, P. P. (2013). InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 5, 307-317.
Brus, L. E. (1983). A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of Chemical Physics 79, 5566-5571.
Bücking, H. & Heyser, W. (2001). Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula x Populus alba and the implications for transfer processes in e ectomycorrhizal associations. Tree Physiology 21, 101-107.
Campos, B. B., Abellán, C., Zougagh, M., Jimenez-Jimenez, J., Rodríguez-Castellón, E., Esteves da Silva, J. C. G., Ríos, A. & Algarra, M. (2015). Fluorescent chemosensor for pyridine based on N-doped carbon dots. Journal of Colloid and Interface Science 458, 209-216.
Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters 57, 1046-1048.
Carrillo-Carrión, C., Simonet, B. M. & Valcárcel, M. (2011). Rapid fluorescence determination of diquat herbicide in food grains using quantum dots as new reducing agent. Analytica Chimica Acta 692, 103-108.
Cayuela, A., Laura Soriano, M. & Valcárcel, M. (2013). Strong luminescence of carbon dots induced by acetone passivation: efficient sensor for a rapid analysis of two different pollutants. Analytica Chimica Acta 804, 246-251.
Cayuela, A., Soriano, M. L., Carrillo-Carrión, C. & Valcárcel, M. (2016). Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical Communications 52, 1311-1326.
Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., Barbour, M. M., Williams, D. G., Reich, P. B., Ellsworth, D. S., Dawson, T. E., Griffiths, H. G., Farquhar, G. D. & Wright, I. J. (2009). Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology 36, 199-213.
Chae, Y., Kim, S. W. & An, Y. J. (2016). In vivo visual evaluation of nanoparticle transfer in a three-species terrestrial food chain. Chemosphere 151, 101-107.
Chan, W. C. W. & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016-2018.
Chang, B.-M., Lin, H.-H., Su, L.-J., Lin, W.-D., Lin, R.-J., Tzeng, Y.-K., Lee, R. T., Lee, Y. C., Yu, A. L. & Chang, H.-C. (2013). Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Advanced Functional Materials 23, 5737-5745.
Chang, L., He, X., Chen, L. & Zhang, Y. (2017). Mercaptophenylboronic acid-capped Mn-doped ZnS quantum dots for highly selective and sensitive fluorescence detection of glycoproteins. Sensors and Actuators, B: Chemical 243, 72-77.
Chen, H., Li, W., Wang, Q., Jin, X., Nie, Z. & Yao, S. (2016). Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochimica Acta 214, 94-102.
Chen, J., Dou, R., Yang, Z., Wang, X., Mao, C., Gao, X. & Wang, L. (2016a). The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology 10, 818-828.
Chen, J., Liu, B., Yang, Z., Qu, J., Xun, H., Dou, R., Gao, X. & Wang, L. (2018). Phenotypic, transcriptional, physiological and metabolic responses to carbon nanodot exposure in Arabidopsis thaliana (L.). Environmental Science: Nano 5, 2672-2685.
Chen, J., Zhu, Y. & Zhang, Y. (2016b). Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb2+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 164, 98-102.
Chen, J.-T., Sun, H.-Q., Wang, W.-L., Xu, W.-M., He, Q., Shen, S., Qian, J. & Gao, H.-L. (2015a). Polyethylene glycol modification decreases the cardiac toxicity of carbonaceous dots in mouse and zebrafish models. Acta Pharmacologica Sinica 36, 1349-1355.
Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., Zhang, X., Tai, R. & Fan, C. (2012). The cytotoxicity of cadmium-based quantum dots. Biomaterials 33, 1238-1244.
Chen, X., Gan, M., Xu, H., Chen, F., Ming, X., Xu, H., Wei, H., Xu, F. & Liu, C. (2014a). Development of a rapid and sensitive quantum dot-based immunochromatographic strip by double labeling PCR products for detection of Staphylococcus aureus in food. Food Control 46, 225-232.
Chen, X., Jin, Q., Wu, L., Tung, C. H. & Tang, X. (2014b). Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angewandte Chemie - International Edition 53, 12542-12547.
Chen, Y. & Rosenzweig, Z. (2002). Luminescent CdS quantum dots as selective ion probes. Analytical Chemistry 74, 5132-5138.
Chen, Z., Wu, X., Hu, S., Hu, P., Yan, H., Tang, Z. & Liu, Y. (2015b). Upconversion NaLuF4 fluorescent nanoprobes for jellyfish cell imaging and irritation assessment of organic dyes. Journal of Materials Chemistry C 3, 6067-6076.
Cheng, X., Huang, Y., Li, D., Yuan, C., Li, Z. L., Sun, L., Jiang, H. & Ma, J. (2019). A sensitive polymer dots fluorescent sensor for determination of Α-L-fucosidase activity in human serum. Sensors and Actuators, B: Chemical 288, 38-43.
Chern, M., Kays, J. C., Bhuckory, S. & Dennis, A. M. (2019). Sensing with photoluminescent semiconductor quantum dots. Methods and Applications in Fluorescence 7, 012005.
Chibli, H., Carlini, L., Park, S., Dimitrijevic, N. M. & Nadeau, J. L. (2011). Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 3, 2552-2559.
Chinnathambi, S., Chen, S., Ganesan, S. & Hanagata, N. (2014). Silicon quantum dots for biological applications. Advanced Healthcare Materials 3, 10-29.
Choi, H. S., Ipe, B. I., Misra, P., Lee, J. H., Bawendi, M. G. & Frangioni, J. V. (2009a). Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Letters 9, 2354-2359.
Choi, Y., Kim, H. P., Hong, S. M., Ryu, J. Y., Han, S. J. & Song, R. (2009b). In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates. Small 5, 2085-2091.
Chou, K. F. & Dennis, A. M. (2015). Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors (Switzerland) 15, 13288-13325.
Chow, E. K., Zhang, X. Q., Chen, M., Lam, R., Robinson, E., Huang, H., Schaffer, D., Osawa, E., Goga, A. & Ho, D. (2011). Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Science Translational Medicine 3, 73ra21.
Chung, I., Akita, R., Vandlen, R., Toomre, D., Schlessinger, J. & Mellman, I. (2010). Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783-787.
Clarke, S. J., Hollmann, C. A., Zhang, Z., Suffern, D., Bradforth, S. E., Dimitrijevic, N. M., Minarik, W. G. & Nadeau, J. L. (2006). Photophysics of dopamine-modified quantum dots and effects on biological systems. Nature Materials 5, 409-417.
Cui, D., Huang, J., Zhen, X., Li, J., Jiang, Y. & Pu, K. (2019). A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angewandte Chemie - Internationhal Edition 58, 5920-5924.
Curri, M. L., Agostiano, A., Leo, G., Mallardi, A., Cosma, P. & Della Monica, M. (2002). Development of a novel enzyme/semiconductor nanoparticles system for biosensor applichyation. Materials Science and Engineering C 22, 449-452.
Dahan, M., Lévi, S., Luccardini, C., Rostaing, P., Riveau, B. & Triller, A. (2003). Diffusion dynamics of Glycine receptors revealed by single-quantum dot tracking. Science 302, 442-445.
D'Amora, M., Rodio, M., Sancataldo, G., Diaspro, A. & Intartaglia, R. (2019). Laser-fabricated fluorescent, ligand-free silicon nanoparticles: scale-up, biosafety, and 3D live imaging of zebrafish under development. ACS Applied Bio Materials 2, 321-329.
Das, R., Bandyopadhyay, R. & Pramanik, P. (2018). Carbon quantum dots from natural resource: a review. Materials Today Chemistry 8, 96-109.
Das, S., Wolfson, B. P., Tetard, L., Tharkur, J., Bazata, J. & Santra, S. (2015). Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environmental Science: Nano 2, 203-212.
Desai, M. L., Deshmukh, B., Lenka, N., Haran, V., Jha, S., Basu, H., Singhal, R. K., Sharma, P. K., Kailasa, S. K. & Kim, K. H. (2019). Influence of doping ion, capping agent and pH on the fluorescence properties of zinc sulfide quantum dots: sensing of Cu2+ and Hg2+ ions and their biocompatibility with cancer and fungal cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 210, 212-221.
Ding, C., Zhu, A. & Tian, Y. (2014). Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts of Chemical Research 47, 20-30.
Ding, X., Qu, L., Yang, R., Zhou, Y. & Li, J. (2015). A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence 30, 465-471.
Drbohlavova, J., Adam, V., Kizek, R. & Hubalek, J. (2009). Quantum dots - characterization, preparation and usage in biological systems. International Journal of Molecular Sciences 10, 656-673.
Du, F., Zeng, F., Ming, Y. & Wu, S. (2013). Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchimica Acta 180, 453-460.
Eggenberger, K., Merkulov, A., Darbandi, M., Nann, T. & Nick, P. (2007). Direct immunofluorescence of plant microtubules based on semiconductor nanocrystals. Bioconjugate Chemistry 18, 1879-1886.
Ekvall, M. T., Bianco, G., Linse, S., Linke, H., Bäckman, J. & Hansson, L. A. (2013). Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles. PLoS One 8, e78498.
Ekvall, M. T., Sha, Y., Palmér, T., Bianco, G., Bäckman, J., Åström, K. & Hansson, L. A. (2020). Behavioural responses to co-occurring threats of predation and ultraviolet radiation in Daphnia. Freshwater Biology 65, 1509-1517.
Erland, L. A. E., Yasunaga, A., Li, I. T. S., Murch, S. J. & Saxena, P. K. (2019). Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. Journal of Pineal Research 66, e12527.
Erogbogbo, F., Yong, K. T., Roy, I., Hu, R., Law, W. C., Zhao, W., Ding, H., Wu, F., Kumar, R., Swihart, M. T. & Prasad, P. N. (2011). In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413-423.
Erogbogbo, F., Yong, K. T., Roy, I., Xu, G. X., Prasad, P. N. & Swihart, M. T. (2008). Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873-878.
Essner, J. B., Kist, J. A., Polo-Parada, L. & Baker, G. A. (2018). Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chemistry of Materials 30, 1878-1887.
Fan, J., Claudel, M., Ronzani, C., Arezki, Y., Lebeau, L. & Pons, F. (2019). Physicochemical characteristics that affect carbon dot safety: lessons from a comprehensive study on a nanoparticle library. International Journal of Pharmaceutics 569, 118521.
Fan, Z., Li, Y., Li, X., Fan, L., Zhou, S., Fang, D. & Yang, S. (2014). Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dye crystals, chemical sensing and bioimaging. Carbon 70, 149-156.
Feng, T., Ai, X., An, G., Yang, P. & Zhao, Y. (2016). Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10, 4410-4420.
Feugang, J. M., Youngblood, R. C., Greene, J. M., Willard, S. T. & Ryan, P. L. (2015). Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. Journal of Nanobiotechnology 13, 38.
Filali, S., Pirot, F. & Miossec, P. (2020). Biological applications and toxicity minimization of semiconductor quantum dots. Trends in Biotechnology 38, 163-177.
Galeone, A., Vecchio, G., Malvindi, M. A., Brunetti, V., Cingolani, R. & Pompa, P. P. (2012). In vivo assessment of CdSe-ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. Nanoscale 4, 6401-6407.
Gao, W., Song, H., Wang, X., Liu, X., Pang, X., Zhou, Y., Gao, B. & Peng, X. (2018). Carbon dots with red mission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo. ACS Applied Materials and Interfaces 10, 1147-1154.
Gao, Z., Yang, D., Wan, Y. & Yang, Y. (2020). One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation. Analytical and Bioanalytical Chemistry 412, 871-880.
García-Cortés, M., Fernández-Argüelles, M. T., Costa-Fernández, J. M. & Sanz-Medel, A. (2017). Sensitive prostate specific antigen quantification using dihydrolipoic acid surface-functionalized phosphorescent quantum dots. Analytica Chimica Acta 987, 118-126.
Ge, L., Pan, N., Jin, J., Wang, P., Lecroy, G. E., Liang, W., Yang, L., Teisl, L. R., Tang, Y. & Sun, Y. P. (2018). Systematic comparison of carbon dots from different preparations - consistent optical properties and photoinduced redox characteristics in visible spectrum and structural and mechanistic implications. Journal of Physical Chemistry C 122, 21667-21676.
Gismondi, A., Reina, G., Orlanducci, S., Mizzoni, F., Gay, S., Terranova, M. L. & Canini, A. (2015). Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials 38, 22-35.
Goldman, E. R., Clapp, A. R., Anderson, G. P., Uyeda, H. T., Mauro, J. M., Medintz, I. L. & Mattoussi, H. (2004). Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analytical Chemistry 76, 684-688.
Goldman, E. R., Medintz, I. L., Whitley, J. L., Hayhurst, A., Clapp, A. R., Uyeda, H. T., Deschamps, J. R., Lassman, M. E. & Mattoussi, H. (2005). A hybrid quantum dot - antibody fragment fluorescence resonance energy transfer-based TNT sensor. Journal of the American Chemical Society 127, 6744-6751.
Gorshkov, K., Susumu, K., Chen, J., Xu, M., Pradhan, M., Zhu, W., Hu, X., Breger, J. C., Wolak, M. & Oh, E. (2020). Quantum dot-conjugated SARS-CoV-2 spike pseudo-virions enable tracking of angiotensin converting enzyme 2 binding and endocytosis. ACS Nano 14, 12234-12247.
Goryacheva, I. Y., Sapelkin, A. V. & Sukhorukov, G. B. (2017a). Carbon nanodots: mechanisms of photoluminescence and principles of application. Trends in Analytical Chemistry 90, 27-37.
Goryacheva, O. A., Beloglazova, N. V., Vostrikova, A. M., Pozharov, M. V., Sobolev, A. M. & Goryacheva, I. Y. (2017b). Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): application for immunoassay. Talanta 164, 377-385.
Green, M. (2010). The nature of quantum dot capping ligands. Journal of Materials Chemistry 20, 5797-5809.
Guo, X., Zhang, L., Wang, Z., Sun, Y., Liu, Q., Dong, W. & Hao, A. (2019). Fluorescent carbon dots based sensing system for detection of enrofloxacin in water solutions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 219, 15-22.
Gupta, G. S., Kumar, A., Senapati, V. A., Pandey, A. K., Shanker, R. & Dhawan, A. (2017). Laboratory scale microbial food chain to study bioaccumulation, biomagnification, and ecotoxicity of cadmium telluride quantum dots. Environmental Science and Technology 51, 1695-1706.
Gurdasani, K., Li, L., Rafter, M. A., Daglish, G. J. & Walter, G. H. (2021). Nanoparticles as potential external markers for mark-release-recapture studies on Tribolium castaneum. Entomologia Experimentalis et Applicata 169, 575-581.
Gustafsson, F. S., Whiteside, M. D., Jiranek, V. & Durall, D. M. (2014). Development and use of a quantum dot probe to track multiple yeast strains in mixed culture. Scientific Reports 4, 6971.
Han, M., Gao, X., Su, J. Z. & Nie, S. (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nanomaterials 7, 176.
Han, S., Chang, T., Zhao, H., Du, H., Liu, S., Wu, B. & Qin, S. (2017). Cultivating fluorescent flowers with highly luminescent carbon dots fabricated by a double passivation method. Nanomaterials 7, 176.
Hardman, R. (2006). A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives 114, 165-172.
Hauck, T. S., Anderson, R. E., Fischer, H. C., Newbigging, S. & Chan, W. C. W. (2010). In vivo quantum-dot toxicity assessment. Small 6, 138-144.
He, Y., Hu, X., Gong, Z., Chen, S. & Yuan, R. (2020). A novel electrochemiluminescence biosensor based on the self-ECL emission of conjugated polymer dots for lead ion detection. Microchimica Acta 187, 237.
He, Y., Kang, Z. H., Li, Q. S., Tsang, C. H. A., Fan, C. H. & Lee, S. T. (2009). Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angewandte Chemie - International Edition 48, 128-132.
Heuschele, J., Ekvall, M. T., Bianco, G., Hylander, S. & Hansson, L.-A. (2017). Context-dependent individual behavioral consistency in Daphnia. Ecosphere 8, e01679.
Hevesy, G. (1939). Application of isotopes in biology. Journal of the Chemical Society (Resumed) 1213-1223. https://doi.org/10.1039/JR9390001213.
Hezinger, A. F. E., Teßmar, J. & Göpferich, A. (2008). Polymer coating of quantum dots - a powerful tool toward diagnostics and sensorics. European Journal of Pharmaceutics and Biopharmaceutics 68, 138-152.
Himmelstoß, S. F. & Hirsch, T. (2019). A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence 7, 22002.
Hischemöller, A., Nordmann, J., Ptacek, P., Mummenhoff, K. & Haase, M. (2009). In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. Journal of Biomedical Nanotechnology 5, 278-284.
Holbrook, R. D., Murphy, K. E., Morrow, J. B. & Cole, K. D. (2008). Trophic transfer of nanoparticles in a simplified invertebrate food web. Nature Nanotechnology 3, 352-355.
Hoy, J., Morrison, P. J., Steinberg, L. K., Buhro, W. E. & Loomis, R. A. (2013). Excitation energy dependence of the photoluminescence quantum yields of core and core/shell quantum dots. Journal of Physical Chemistry Letters 4, 2053-2060.
Hsu, C. Y., Chen, C. W., Yu, H. P., Lin, Y. F. & Lai, P. S. (2013). Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials 34, 1204-1212.
Hu, J., Zhan, S., Fu, H., Nie, G., Hu, S., Wu, S., Shi, L., Wu, X. & Liu, Y. (2019). Dye-sensitized core/shell upconversion nanoparticles for detecting nitrites in plant cells. Particle and Particle Systems Characterization 36, 1900014.
Hu, L., Zeng, G., Chen, G., Huang, Z., Wan, J., Chen, A., Yu, Z., Yang, J., He, K. & Qin, L. (2017). Bioaccumulation and toxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces 159, 303-311.
Hu, X. & Gao, X. (2010). Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano 4, 6080-6086.
Hu, Y., Fu, A., Miao, Z., Zhang, X., Wang, T., Kang, A., Shan, J., Zhu, D. & Li, W. (2018). Fluorescent ligand fishing combination with in-situ imaging and characterizing to screen Hsp 90 inhibitors from Curcuma longa L. based on InP/ZnS quantum dots embedded mesoporous nanoparticles. Talanta 178, 258-267.
Huang, H., Liao, L., Xu, X., Zou, M., Liu, F. & Li, N. (2013a). The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing. Talanta 117, 152-157.
Huang, X., Zhang, F., Zhu, L., Choi, K. Y., Guo, N., Guo, J., Tackett, K., Anilkumar, P., Liu, G., Quan, Q., Choi, H. S., Niu, G., Sun, Y. P., Lee, S. & Chen, X. (2013b). Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7, 5684-5693.
Hylander, S., Ekvall, M. T., Bianco, G., Yang, X. & Hansson, L. A. (2014). Induced tolerance expressed as relaxed behavioural threat response in millimetresized aquatic organisms. Proceedings of the Royal Society B: Biological Sciences 281, 20140364.
Hynson, N. A., Allison, S. D. & Treseder, K. K. (2015). Quantum dots reveal shifts in organic nitrogen uptake by fungi exposed to long-term nitrogen enrichment. PLoS One 10, 1-13.
Idris, N. M., Li, Z., Ye, L., Wei Sim, E. K., Mahendran, R., Ho, P. C. L. & Zhang, Y. (2009). Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30, 5104-5113.
Jackson, B. P., Bugge, D., Ranville, J. F. & Chen, C. Y. (2012). Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus. Environmental Science and Technology 46, 5550-5556.
Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. (2003). Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology 21, 47-51.
Jiang, S., Zhang, Y., Lim, K. M., Sim, E. K. W. & Ye, L. (2009). NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 20, 155101.
Jin, D., Xi, P., Wang, B., Zhang, L., Enderlein, J. & Van Oijen, A. M. (2018). Nanoparticles for super-resolution microscopy and single-molecule tracking. Nature Methods 15, 415-423.
Jinadasa, K. K., Peña-Vázquez, E., Bermejo-Barrera, P. & Moreda-Piñeiro, A. (2020). Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish. Analytical and Bioanalytical Chemistry 412, 1663-1673.
Kasibabu, B. S. B., D'Souza, S. L., Jha, S. & Kailasa, S. K. (2015a). Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from Carica papaya juice. Journal of Fluorescence 25, 803-810.
Kasibabu, B. S. B., D'souza, S. L., Jha, S., Singhal, R. K., Basu, H. & Kailasa, S. K. (2015b). One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Analytical Methods 7, 2373-2378.
Khan, M. S., Bhaisare, M. L., Pandey, S., Talib, A., Wu, S. M., Kailasa, S. K. & Wu, H. F. (2015). Exploring the ability of water soluble carbon dots as matrix for detecting neurological disorders using MALDI-TOF MS. International Journal of Mass Spectrometry 393, 25-33.
Kim, D., Lee, Y. D., Jo, S., Kim, S. & Lee, T. S. (2020). Detection and imaging of cathepsin L in cancer cells using the aggregation of conjugated polymer dots and magnetic nanoparticles. Sensors and Actuators, B: Chemical 307, 127641.
Kim, S. W., Kwak, J. I. & An, Y. J. (2016). Fluorescent approach for visually observing quantum dot uptake in living organisms. Chemosphere 144, 1763-1770.
Klein, S., Zolk, O., Fromm, M. F., Schrödl, F., Neuhuber, W. & Kryschi, C. (2009). Functionalized silicon quantum dots tailored for targeted siRNA delivery. Biochemical and Biophysical Research Communications 387, 164-168.
Kolackova, M., Moulick, A., Kopel, P., Dvorak, M., Adam, V., Klejdus, B. & Huska, D. (2019). Antioxidant, gene expression and metabolomics fingerprint analysis of Arabidopsis thaliana treated by foliar spraying of ZnSe quantum dots and their growth inhibition of Agrobacterium tumefaciens. Journal of Hazardous Materials 365, 932-941.
Koo, Y., Wang, J., Zhang, Q., Zhu, H., Chehab, E. W., Colvin, V. L., Alvarez, P. J. J. & Braam, J. (2015). Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environmental Science and Technology 49, 626-632.
Landfester, K., Montenegro, R., Scherf, U., Güntner, R., Asawapirom, U., Patil, S., Neher, D. & Kietzke, T. (2002). Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Advanced Materials 14, 651-655.
Langer, S. M., Weiss, L. C., Ekvall, M. T., Bianco, G., Hansson, L. A. & Tollrian, R. (2019). A three-dimensional perspective of Daphnia's swimming behavior with and without predator cues. Limnology and Oceanography 64, 1515-1525.
Lee, W. M. & An, Y. J. (2015). Evidence of three-level trophic transfer of quantum dots in an aquatic food chain by using bioimaging. Nanotoxicology 9, 407-412.
Lei, Y. M., Zhou, J., Chai, Y. Q., Zhuo, Y. & Yuan, R. (2018). SnS2 quantum dots as new emitters with strong electrochemiluminescence for ultrasensitive antibody detection. Analytical Chemistry 90, 12270-12277.
Lewinski, N. A., Zhu, H., Jo, H. J. E., Pham, D., Kamath, R. R., Ouyang, C. R., Vulpe, C. D., Colvin, V. L. & Drezek, R. A. (2010). Quantification of water solubilized CdSe/ZnS quantum dots in Daphnia magna. Environmental Science and Technology 44, 1841-1846.
Lewinski, N. A., Zhu, H., Ouyang, C. R., Conner, G. P., Wagner, D. S., Colvin, V. L. & Drezek, R. A. (2011). Trophic transfer of amphiphilic polymer coated CdSe/ZnS quantum dots to Danio rerio. Nanoscale 3, 3080-3083.
Li, D., Sun, Y., Shen, Q., Zhang, Q., Huang, W., Kang, Q. & Shen, D. (2020a). Smartphone-based three-channel ratiometric fluorescent device and application in filed analysis of Hg2+, Fe3+ and Cu2+ in water samples. Microchemical Journal 152, 104423.
Li, H., Guo, S., Li, C., Huang, H., Liu, Y. & Kang, Z. (2015). Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light. ACS Applied Materials and Interfaces 7, 10004-10012.
Li, H., Huang, J., Liu, Y., Lu, F., Zhong, J., Wang, Y., Li, S., Lifshitz, Y., Lee, S. T. & Kang, Z. (2019a). Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Research 12, 1585-1593.
Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., Zhong, J., Huang, H., Wang, Y., Li, S., Lifshitz, Y., Lee, S. T. & Kang, Z. (2018c). Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Applied Bio Materials 1, 663-672.
Li, H., Huang, J., Song, Y., Zhang, M., Wang, H., Lu, F., Huang, H., Liu, Y., Dai, X., Gu, Z., Yang, Z., Zhou, R. & Kang, Z. (2018d). Degradable carbon dots with broad-spectrum antibacterial activity. ACS Applied Materials and Interfaces 10, 26936-26946.
Li, H., Zhang, M., Song, Y., Wang, H., Liu, C., Fu, Y., Huang, H., Liu, Y. & Kang, Z. (2018e). Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. Journal of Materials Chemistry B 6, 5708-5717.
Li, J., Xiao, L., Cheng, Y., Cheng, Y., Wang, Y., Wang, X. & Ding, L. (2019b). Applications of carbon quantum dots to alleviate Cd2+ phytotoxicity in Citrus maxima seedlings. Chemosphere 236, 124385.
Li, L. L., Ji, J., Fei, R., Wang, C. Z., Lu, Q., Zhang, J. R., Jiang, L. P. & Zhu, J. J. (2012). A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Advanced Functional Materials 22, 2971-2979.
Li, R., Sun, H., Wang, S., Wang, Y. & Yu, K. (2018a). Retention of CdS/ZnS quantum dots (QDs) on the root epidermis of woody plant and its implications by benzo[a]pyrene: evidence from the in situ synchronous nanosecond time-resolved fluorescence spectra method. Journal of Agricultural and Food Chemistry 66, 814-821.
Li, S., Peng, Z., Dallman, J., Baker, J., Othman, A. M., Blackwelder, P. L. & Leblanc, R. M. (2016a). Crossing the blood-brain-barrier with transferrin conjugated carbon dots: a zebrafish model study. Colloids and Surfaces B: Biointerfaces 145, 251-256.
Li, S., Wang, J., Sheng, W., Wen, W., Gu, Y. & Wang, S. (2018b). Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Microchimica Acta 185, 388.
Li, W., Zhang, H., Zheng, Y., Chen, S., Liu, Y., Zhuang, J., Liu, W. R. & Lei, B. (2017). Multifunctional carbon dots for highly luminescent orange-emissive cellulose based composite phosphor construction and plant tissue imaging. Nanoscale 9, 12976-12983.
Li, W., Zheng, Y., Zhang, H., Liu, Z., Su, W., Chen, S., Liu, Y., Zhuang, J. & Lei, B. (2016b). Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Applied Materials and Interfaces 8, 19939-19945.
Li, Y., Li, W., Zhang, H., Dong, R., Li, D., Liu, Y., Huang, L. & Lei, B. (2019c). Biomimetic preparation of silicon quantum dots and their phytophysiology effect on cucumber seedlings. Journal of Materials Chemistry B 7, 1107-1115.
Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C. & Liu, Y. (2020b). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers 4, 437-448.
Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J. G. & Lin, Y. (2010). Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Analytical Chemistry 82, 7008-7014.
Li, Z. F. & Ruckenstein, E. (2004). Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Letters 4, 1463-1467.
Lian, F., Wang, C. C., Wang, C. C., Gu, S. & Cao, X. (2019). Variety-dependent responses of rice plants with differential cadmium accumulating capacity to cadmium telluride quantum dots (CdTe QDs): cadmium uptake, antioxidative enzyme activity, and gene expression. Science of the Total Environment 697, 134083.
Liang, R. Q., Li, W., Li, Y., Tan, C. Y., Li, J. X., Jin, Y. X. & Ruan, K. C. (2005). An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Research 33, e17.
Lim, M. E., Lee, Y. L., Zhang, Y. & Chu, J. J. H. (2012). Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33, 1912-1920.
Lim, S. Y., Shen, W. & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews 44, 362-381.
Lin, B., Yu, Y., Liu, F., Cao, Y. & Guo, M. (2017). Tunable and nontoxic fluorescent probes based on carbon dots for imaging of indole propionic acid receptor in plant tissues in situ. Journal of Fluorescence 27, 1495-1503.
Lin, F., Bao, Y.-W. & Wu, F.-G. (2019). Carbon dots for sensing and killing microorganisms. C-Journal of Carbon Research 5, 33.
Linehan, K., Carolan, D. & Doyle, H. (2019). Highly selective optical detection of Fe3+ ions in aqueous solution using label-free silicon nanocrystals. Particle and Particle Systems Characterization 36, 1900034.
Liu, C., Mao, G., Su, C., Ji, X., Chen, Z. & He, Z. (2015). Aptamer-functionalized CdTe:Zn2+ quantum dots for the detection of tomato systemin. Analytical Methods 7, 7748-7752.
Liu, C., Zhang, P., Zhai, X., Tian, F., Li, W., Yang, J., Liu, Y., Wang, H., Wang, W. & Liu, W. (2012). Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33, 3604-3613.
Liu, H., Li, Z., Sun, Y., Geng, X., Hu, Y., Meng, H., Ge, J. & Qu, L. (2018). Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Scientific Reports 8, 1086.
Liu, H., Zhang, X., Xing, B., Han, P., Gambhir, S. S. & Cheng, Z. (2010). Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 6, 1087-1091.
Liu, J., Erogbogbo, F., Yong, K. T., Ye, L., Liu, J., Hu, R., Chen, H., Hu, Y., Yang, Y., Yang, J., Roy, I., Karker, N. A., Swihart, M. T. & Prasad, P. N. (2013). Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7, 7303-7310.
Liu, S. L., Wang, Z. G., Zhang, Z. L. & Pang, D. W. (2016a). Tracking single viruses infecting their host cells using quantum dots. Chemical Society Reviews 45, 1211-1224.
Liu, X., Braun, G. B., Zhong, H., Hall, D. J., Han, W., Qin, M., Zhao, C., Wang, M., She, Z. G., Cao, C., Sailor, M. J., Stallcup, W. B., Ruoslahti, E. & Sugahara, K. N. (2016b). Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Advanced Functional Materials 26, 267-276.
Liu, Y., Zhao, Y., Zhang, T., Chang, Y., Wang, S., Zou, R., Zhu, G., Shen, L. & Guo, Y. (2019). Quantum dots-based immunochromatographic strip for rapid and sensitive detection of acetamiprid in agricultural products. Frontiers in Chemistry 7, 76.
Liu, Y.-Y., Chang, B.-M. & Chang, H.-C. (2020). Nanodiamond-enabled biomedical imaging. Nanomedicine 15, 1599-1616.
Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., Asiri, A. M., Al-Youbi, A. O. & Sun, X. (2012). Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Analytical Chemistry 84, 5351-5357.
Luo, J. H., Li, Q., Chen, S. H. & Yuan, R. (2019). Coreactant-free dual amplified electrochemiluminescent biosensor based on conjugated polymer dots for the ultrasensitive detection of microRNA. ACS Applied Materials and Interfaces 11, 27363-27370.
Ma, L., Wu, S. M., Huang, J., Ding, Y., Pang, D. W. & Li, L. (2008). Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma 117, 181-187.
Majumdar, S., Ma, C., Villani, M., Zuverza-Mena, N., Pagano, L., Huang, Y., Zappettini, A., Keller, A. A., Marmiroli, N., Dhankher, O. P. & White, J. C. (2019). Surface coating determines the response of soybean plants to cadmium sulfide quantum dots. NanoImpact 14, 10015.
Malik, M. A., O'Brien, P. & Revaprasadu, N. (1999). A novel route for the preparation of CuSe and CuInSe2 nanoparticles. Advanced Materials 11, 1441-1444.
Mandal, G., Darragh, M., Wang, Y. A. & Heyes, C. D. (2013). Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells. Chemical Communications 49, 624-626.
Marcon, L., Riquet, F., Vicogne, D., Szunerits, S., Bodart, J. F. & Boukherroub, R. (2010). Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. Journal of Materials Chemistry 20, 8064-8069.
Marmiroli, M., Mussi, F., Pagano, L., Imperiale, D., Lencioni, G., Villani, M., Zappettini, A., White, J. C. & Marmiroli, N. (2020). Cadmium sulfide quantum dots impact Arabidopsis thaliana physiology and morphology. Chemosphere 240, 124856.
Marmiroli, M., Pagano, L., Savo Sardaro, M. L., Villani, M. & Marmiroli, N. (2014). Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots. Environmental Science and Technology 48, 5902-5909.
Martynenko, I. V., Kuznetsova, V. A., Litvinov, I. K., Orlova, A. O., Maslov, V. G., Fedorov, A. V., Dubavik, A., Purcell-Milton, F., Gun'ko, Y. K. & Baranov, A. V. (2016). Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology 27, 075102.
Martynenko, I. V., Litvin, A. P., Purcell-Milton, F., Baranov, A. V., Fedorov, A. V. & Gun'Ko, Y. K. (2017). Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B 5, 6701-6727.
Massey, M., Wu, M., Conroy, E. M. & Algar, W. R. (2015). Mind your P's and Q's: the coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications. Current Opinion in Biotechnology 34, 30-40.
Mattoussi, H., Matthew Mauro, J., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V. & Bawendi, M. G. (2000). Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. Journal of the American Chemical Society 122, 12142-12150.
McVey, B. F. P. & Tilley, R. D. (2014). Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Accounts of Chemical Research 47, 3045-3051.
Medintz, I. L., Clapp, A. R., Brunel, F. M., Tiefenbrunn, T., Tetsuo Uyeda, H., Chang, E. L., Deschamps, J. R., Dawson, P. E. & Mattoussi, H. (2006). Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nature Materials 5, 581-589.
Medintz, I. L., Stewart, M. H., Trammell, S. A., Susumu, K., Delehanty, J. B., Mei, B. C., Melinger, J. S., Blanco-Canosa, J. B., Dawson, P. E. & Mattoussi, H. (2010). Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature Materials 9, 676-684.
Mehta, V. N., Jha, S., Basu, H., Singhal, R. K. & Kailasa, S. K. (2015). One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors and Actuators, B: Chemical 213, 434-443.
Mei, J., Yang, L. Y., Lai, L., Xu, Z. Q., Wang, C., Zhao, J., Jin, J. C., Jiang, F. L. & Liu, Y. (2014). The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: adhesion of quantum dots to the cell surface and the protection effect of ZnS shell. Chemosphere 112, 92-99.
Merkl, J. P., Wolter, C., Flessau, S., Schmidtke, C., Ostermann, J., Feld, A., Mews, A. & Weller, H. (2016). Investigations of ion transport through nanoscale polymer membranes by fluorescence quenching of CdSe/CdS quantum dot/quantum rods. Nanoscale 8, 7402-7407.
Mićić, O. I., Sprague, J., Lu, Z. & Nozik, A. J. (1996). Highly efficient band-edge emission from InP quantum dots. Applied Physics Letters 68, 3150-3152.
Minnaar, C. & Anderson, B. (2019). Using quantum dots as pollen labels to track the fates of individual pollen grains. Methods in Ecology and Evolution 10, 604-614.
Minnaar, C., de Jager, M. L. & Anderson, B. (2019). Intraspecific divergence in floral-tube length promotes asymmetric pollen movement and reproductive isolation. New Phytologist 224, 1160-1170.
Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology 7, 11-23.
Modlitbová, P., Hlaváček, A., Švestková, T., Pořízka, P., Šimoníková, L., Novotný, K. & Kaiser, J. (2019). The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: bioaccumulation, imaging, and spectroscopic studies. Chemosphere 225, 723-734.
Modlitbová, P., Novotný, K., Pořízka, P., Klus, J., Lubal, P., Zlámalová-Gargošová, H. & Kaiser, J. (2018a). Comparative investigation of toxicity and bioaccumulation of cd-based quantum dots and cd salt in freshwater plant Lemna minor L. Ecotoxicology and Environmental Safety 147, 334-341.
Modlitbová, P., Pořízka, P., Novotný, K., Drbohlavová, J., Chamradová, I., Farka, Z., Zlámalová-Gargošová, H., Romih, T. & Kaiser, J. (2018b). Short-term assessment of cadmium toxicity and uptake from different types of cd-based quantum dots in the model plant Allium cepa L. Ecotoxicology and Environmental Safety 153, 23-31.
Mohan, N., Chen, C. S., Hsieh, H. H., Wu, Y. C. & Chang, H. C. (2010). In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Letters 10, 3692-3699.
Morozova, S., Alikina, M., Vinogradov, A. & Pagliaro, M. (2020). Silicon quantum dots: synthesis, encapsulation, and epplication in light-emitting diodes. Frontiers in Chemistry 8, 191.
Müller, F., Houben, A., Barker, P. E., Xiao, Y., Käs, J. A. & Melzer, M. (2006). Quantum dots - a versatile tool in plant science? Journal of Nanobiotechnology 4, 5.
Nair, R., Poulose, A. C., Nagaoka, Y., Yoshida, Y., Maekawa, T. & Kumar, D. S. (2011). Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. Journal of Fluorescence 21, 2057-2068.
Namdari, P., Negahdari, B. & Eatemadi, A. (2017). Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomedicine and Pharmacotherapy 87, 209-222.
Nastiti, C. M. R. R., Mohammed, Y., Telaprolu, K. C., Liang, X., Grice, J. E., Roberts, M. S. & Benson, H. A. E. (2019). Evaluation of quantum dot skin penetration in porcine skin: effect of age and anatomical site of topical application. Skin Pharmacology and Physiology 32, 182-191.
Navarro, D. A., Bisson, M. A. & Aga, D. S. (2012). Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. Journal of Hazardous Materials 211-212, 427-435.
Navarro-Ruiz, M. C., Cayuela, A., Soriano, M. L., Guzm, R., Malag, M. M. & Valc, M. (2020). A systematic comparative study of the toxicity of semiconductor and graphitic carbon-based quantum dots using in vitro cell models. Applied Sciences 10, 8845.
Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment 5, 429-436.
Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D. & Brus, L. E. (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802-804.
Nishimura, H., Ritchie, K., Kasai, R. S., Goto, M., Morone, N., Sugimura, H., Tanaka, K., Sase, I., Yoshimura, A., Nakano, Y., Fujiwara, T. K. & Kusumi, A. (2013). Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. Journal of Cell Biology 202, 967-983.
Nordmann, J., Buczka, S., Voss, B., Haase, M. & Mummenhoff, K. (2015). In vivo analysis of the size- and time-dependent uptake of NaYF4:Yb,Er upconversion nanocrystals by pumpkin seedlings. Journal of Materials Chemistry B 3, 144-150.
Pan, D., Zhang, J., Li, Z. & Wu, M. (2010). Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Advanced Materials 22, 734-738.
Pan, L., Sun, S., Zhang, A., Jiang, K., Zhang, L., Dong, C., Huang, Q., Wu, A. & Lin, H. (2015). Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Advanced Materials 27, 7782-7787.
Pang, C. & Gong, Y. (2019). Current status and future prospects of semiconductor quantum dots in botany. Journal of Agricultural and Food Chemistry 67, 7561-7568.
Park, J. H., Gu, L., Von Maltzahn, G., Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. (2009). Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials 8, 331-336.
Park, Y., Yoo, J., Lim, B., Kwon, W. & Rhee, S. W. (2016). Improving the functionality of carbon nanodots: doping and surface functionalization. Journal of Materials Chemistry A 4, 11582-11603.
Parvizi, R., Azad, S., Dashtian, K., Ghaedi, M. & Heidari, H. (2019). Natural source-based graphene as sensitising agents for air quality monitoring. Scientific Reports 9, 3798.
Pelley, J. L., Daar, A. S. & Saner, M. A. (2009). State of academic knowledge on toxicity and biological fate of quantum dots. Toxicological Sciences 112, 276-296.
Peng, J., Sun, Y., Liu, Q., Yang, Y., Zhou, J., Feng, W., Zhang, X. & Li, F. (2012). Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Research 5, 770-782.
Peng, Z., Miyanji, E. H., Zhou, Y., Pardo, J., Hettiarachchi, S. D., Li, S., Blackwelder, P. L., Skromne, I. & Leblanc, R. M. (2017). Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale 9, 17533-17543.
Plácido, J., Bustamante-López, S., Meissner, K. E., Kelly, D. E. & Kelly, S. L. (2019). Microalgae biochar-derived carbon dots and their application in heavy metal sensing in aqueous systems. Science of the Total Environment 656, 531-539.
Pradhan, N., Battaglia, D. M., Liu, Y. & Peng, X. (2007). Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Letters 7, 312-317.
Pramanik, A., Kole, A. K., Krishnaraj, R. N., Biswas, S., Tiwary, C. S., Varalakshmi, P., Rai, S. K., Kumar, B. A. & Kumbhakar, P. (2016). A novel technique of synthesis of highly fluorescent carbon nanoparticles from broth constituent and in-vivo bioimaging of C. elegans. Journal of Fluorescence 26, 1541-1548.
Qi, B. P., Bao, L., Zhang, Z. L. & Pang, D. W. (2016). Electrochemical methods to study photoluminescent carbon nanodots: preparation, photoluminescence mechanism and sensing. ACS Applied Materials and Interfaces 8, 28372-28382.
Qian, K., Guo, H., Chen, G., Ma, C. & Xing, B. (2018). Distribution of different surface modified carbon dots in pumpkin seedlings. Scientific Reports 8, 7991.
Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., Haddad, R. E., Fan, H. & Sun, Z. (2014). Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports 4, 5294.
Ravindran, S., Kim, S., Martin, R., Lord, E. M. & Ozkan, C. S. (2005). Quantum dots as bio-labels for the localization of a small plant adhesion protein. Nanotechnology 16, 1-4.
Reed, M. A., Bate, R. T., Bradshaw, K., Duncan, W. M., Frensley, W. R., Lee, J. W. & Shih, H. D. (1986). Spatial quantization in GaAs-AlGaAs multiple quantum dots. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 4, 358-360.
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nature Methods 5, 763-775.
Reshma, V. G. & Mohanan, P. V. (2019). Quantum dots: applications and safety consequences. Journal of Luminescence 205, 287-298.
Rieger, S., Kulkarni, R. P., Darcy, D., Fraser, S. E. & Köster, R. W. (2005). Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Developmental Dynamics 234, 670-681.
Ristic, B. Z., Milenkovic, M. M., Dakic, I. R., Todorovic-Markovic, B. M., Milosavljevic, M. S., Budimir, M. D., Paunovic, V. G., Dramicanin, M. D., Markovic, Z. M. & Trajkovic, V. S. (2014). Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35, 4428-4435.
Ritenberg, M., Nandi, S., Kolusheva, S., Dandela, R., Meijler, M. M. & Jelinek, R. (2016). Imaging Pseudomonas aeruginosa biofilm extracellular polymer scaffolds with amphiphilic carbon dots. ACS Chemical Biology 11, 1265-1270.
Rocha, T. L., Mestre, N. C., Sabóia-Morais, S. M. T. & Bebianno, M. J. (2017). Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environment International 98, 1-17.
Rosenthal, S. J., Chang, J. C., Kovtun, O., McBride, J. R. & Tomlinson, I. D. (2011). Biocompatible quantum dots for biological applications. Chemistry and Biology 18, 10-24.
Rossetti, R., Nakahara, S. & Brus, L. E. (1983). Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. The Journal of Chemical Physics 79, 1086-1088.
Roy, P., Chen, P. C., Periasamy, A. P., Chen, Y. N. & Chang, H. T. (2015). Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today 18, 447-458.
Safarpour, H., Safarnejad, M. R., Tabatabaei, M., Mohsenifar, A., Rad, F., Basirat, M., Shahryari, F. & Hasanzadeh, F. (2012). Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Canadian Journal of Plant Pathology 34, 507-515.
Schiffman, J. D. & Balakrishna, R. G. (2018). Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators, B: Chemical 258, 1191-1214.
Selvan, S. T., Tan, T. T. & Ying, J. Y. (2005). Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Advanced Materials 17, 1620-1625.
Sha, R., Jones, S. S., Vishnu, N., Soundiraraju, B. & Badhulika, S. (2018). A novel biomass derived carbon quantum dots for highly sensitive and selective detection of hydrazine. Electroanalysis 30, 2228-2232.
Shamsipur, M., Chabok, A., Molaabasi, F., Seyfoori, A., Hajipour-Verdom, B., Shojaedin-Givi, B., Sedghi, M., Naderi-Manesh, H. & Yeganeh-Faal, A. (2019). Label free phosphate functionalized semiconducting polymer dots for detection of iron(III) and cytochrome c with application to apoptosis imaging. Biosensors and Bioelectronics 141, 111337.
Sharma, V. K., McDonald, T. J., Sohn, M., Anquandah, G. A. K., Pettine, M. & Zboril, R. (2017). Assessment of toxicity of selenium and cadmium selenium quantum dots: a review. Chemosphere 188, 403-413.
Shen, C., Ge, S., Pang, Y., Xi, F., Liu, J., Dong, X. & Chen, P. (2017). Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions. Journal of Materials Chemistry B 5, 6593-6600.
Sheng, L., Huangfu, B., Xu, Q., Tian, W., Li, Z., Meng, A. & Tan, S. (2020). A highly selective and sensitive fluorescent probe for detecting Cr(VI) and cell imaging based on nitrogen-doped graphene quantum dots. Journal of Alloys and Compounds 820, 153191.
Shi, B., Su, Y., Zhang, L., Huang, M., Liu, R. & Zhao, S. (2016). Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Applied Materials and Interfaces 8, 10717-10725.
Shi, B., Zhang, L., Lan, C., Zhao, J., Su, Y. & Zhao, S. (2015). One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions. Talanta 142, 131-139.
Shojaei, T. R., Salleh, M. A. M., Sijam, K., Rahim, R. A., Mohsenifar, A., Safarnejad, R. & Tabatabaei, M. (2016). Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchimica Acta 183, 2277-2287.
So, M. K., Xu, C., Loening, A. M., Gambhir, S. S. & Rao, J. (2006). Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnology 24, 339-343.
Sooklal, K., Cullum, B. S., Angel, S. M. & Murphy, C. J. (1996). Photophysical properties of ZnS nanoclusters with spatially localized Mn2+. Journal of Physical Chemistry 100, 4551-4555.
Srivastava, R. R., Singh, V. K. & Srivastava, A. (2020). Facile synthesis of highly fluorescent water-soluble SnS2 QDs for effective detection of Fe3+ and unveiling its fluorescence quenching mechanism. Optical Materials 109, 110337.
Stern, S. T., Zolnik, B. S., McLeland, C. B., Clogston, J., Zheng, J. & McNeil, S. E. (2008). Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicological Sciences 106, 140-152.
Su, L. X., Ma, X. L., Zhao, K. K., Shen, C. L., Lou, Q., Yin, D. M. & Shan, C. X. (2018). Carbon nanodots for enhancing the stress resistance of peanut plants. ACS Omega 3, 17770-17777.
Sun, H., Gao, N., Dong, K., Ren, J. & Qu, X. (2014). Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8, 6202-6210.
Sun, J., Ling, P. & Gao, F. (2017). A mitochondria-targeted Ratiometric biosensor for pH monitoring and imaging in living cells with Congo-red-functionalized dual-emission semiconducting polymer dots. Analytical Chemistry 89, 11703-11710.
Swift, T. A., Fagan, D., Benito-Alifonso, D., Hill, S. A., Yallop, M. L., Oliver, T. A. A., Lawson, T., Galan, M. C. & Whitney, H. M. (2021). Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. New Phytologist 229, 783-790.
Tan, X., Li, Q. & Yang, J. (2020). CdTe QDs based fluorescent sensor for the determination of gallic acid in tea. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 224, 117356.
Tang, S., Allagadda, V., Chibli, H., Nadeau, J. L. & Mayer, G. D. (2013). Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots. Metallomics 5, 1411-1422.
Tao, S., Feng, T., Zheng, C., Zhu, S. & Yang, B. (2019). Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. Journal of Physical Chemistry Letters 10, 5182-5188.
Taranova, N. A., Berlina, A. N., Zherdev, A. V. & Dzantiev, B. B. (2015). ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors and Bioelectronics 63, 255-261.
Tian, L. J., Peng, Y., Chen, D. L., Ma, J. Y., Yu, H. Q. & Li, W. W. (2017). Spectral insights into the transformation and distribution of CdSe quantum dots in microorganisms during food-chain transport. Scientific Reports 7, 4370.
Tian, P., Tang, L., Teng, K. S. & Lau, S. P. (2018). Graphene quantum dots from chemistry to applications. Materials Today Chemistry 10, 221-258.
Tripathi, S. & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience (Switzerland) 5, 609-616.
Tsoi, K. M., Dai, Q., Alman, B. A. & Chan, W. C. W. (2013). Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Accounts of Chemical Research 46, 662-671.
van't Padje, A., Bonfante, P., Ciampi, L. T. & Kiers, E. T. (2021). Quantifying nutrient trade in the arbuscular mycorrhizal symbiosis under extreme weather events using quantum-dot tagged phosphorus. Frontiers in Ecology and Evolution 9, 153.
van't Padje, A., Oyarte Galvez, L., Klein, M., Hink, M. A., Postma, M., Shimizu, T. & Kiers, E. T. (2020a). Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. ISME Journal 15, 435-449.
van't Padje, A., Werner, G. D. A. & Kiers, E. T. (2020b). Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt ‘crashes’ and ‘booms’ of resource availability. New Phytologist 229, 2933-2944.
Vastarella, W. & Nicastri, R. (2005). Enzyme/semiconductor nanoclusters combined systems for novel amperometric biosensors. Talanta 66, 627-633.
Vaz, R., Bettini, J., Júnior, J. G. F., Lima, E. D. S., Botero, W. G., Santos, J. C. C. & Schiavon, M. A. (2017). High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. Journal of Photochemistry and Photobiology A: Chemistry 346, 502-511.
Veronesi, G., Moros, M., Castillo-Michel, H., Mattera, L., Onorato, G., Wegner, K. D., Ling, W. L., Reiss, P. & Tortiglione, C. (2019). In vivo biotransformations of indium phosphide quantum dots revealed by x-ray microspectroscopy. ACS Applied Materials & Interfaces 11, 35630-35640.
Wagner, A. M., Knipe, J. M., Orive, G. & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia 94, 44-63.
Wang, C., Tao, H., Cheng, L. & Liu, Z. (2011). Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32, 6145-6154.
Wang, C. Z. & He, X. P. (2018). Supramolecular glycorhodamine-polymer dot ensembles for the homogeneous, fluorogenic analysis of lectins. Carbohydrate Research 455, 1-4.
Wang, D., Lin, B., Cao, Y., Guo, M. & Yu, Y. (2016). A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. Journal of Agricultural and Food Chemistry 64, 6042-6050.
Wang, H., Li, H., Zhang, M., Song, Y., Huang, J., Huang, H., Shao, M., Liu, Y. & Kang, Z. (2018a). Carbon dots enhance the nitrogen fixation activity of Azotobacter chroococcum. ACS Applied Materials and Interfaces 10, 16308-16314.
Wang, H., Zhang, M., Song, Y., Li, H., Huang, H., Shao, M., Li, Y. & Kang, Z. (2018b). Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon 136, 94-102.
Wang, J., Yang, Y., Zhu, H., Braam, J., Schnoor, J. L. & Alvarez, P. J. J. (2014). Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings. Environmental Science and Technology 48, 6754-6762.
Wang, J., Zhang, P., Huang, C., Liu, G., Leung, K. C. F. & Wáng, Y. X. J. (2015). High performance photoluminescent carbon dots for in vitro and in vivo bioimaging: effect of nitrogen doping ratios. Langmuir 31, 8063-8073.
Wang, K., Gao, Z., Gao, G., Wo, Y., Wang, Y., Shen, G. & Cui, D. (2013). Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Research Letters 8, 122.
Wang, S., Liu, Y., Jiao, S., Zhao, Y., Guo, Y., Wang, M. & Zhu, G. (2017). Quantum-dot-based lateral flow immunoassay for detection of neonicotinoid residues in tea leaves. Journal of Agricultural and Food Chemistry 65, 10107-10114.
Wang, W., Zhang, Y., Liu, Y. & He, Y. (2019). Highly selective and sensitive ratiometric fluorescent polymer dots for detecting hypochlorite in 100% aqueous media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 207, 73-78.
Wang, Y. & Tang, M. (2018). Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. Science of the Total Environment. 625, 940-962.
Wang, Y., Zhou, Y., Xu, L., Han, Z., Yin, H. & Ai, S. (2018). Photoelectrochemical apta-biosensor for zeatin detection based on graphene quantum dots improved photoactivity of graphite-like carbon nitride and streptavidin induced signal inhibition. Sensors and Actuators, B: Chemical 257, 237-244.
Wen, S., Zhou, J., Zheng, K., Bednarkiewicz, A., Liu, X. & Jin, D. (2018). Advances in highly doped upconversion nanoparticles. Nature Communications 9, 2415.
Werlin, R., Priester, J. H., Mielke, R. E., Krämer, S., Jackson, S., Stoimenov, P. K., Stucky, G. D., Cherr, G. N., Orias, E. & Holden, P. A. (2011). Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nature Nanotechnology 6, 65-71.
Whiteside, M. D., Digman, M. A., Gratton, E. & Treseder, K. K. (2012a). Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biology and Biochemistry 55, 7-13.
Whiteside, M. D., Garcia, M. O. & Treseder, K. K. (2012b). Amino acid uptake in arbuscular mycorrhizal plants. PLoS One 7, 8-11.
Whiteside, M. D., Treseder, K. K. & Atsatt, P. R. (2009). The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90, 100-108.
Whiteside, M. D., Werner, G. D. A., Caldas, V. E. A., van't Padje, A., Dupin, S. E., Elbers, B., Bakker, M., Wyatt, G. A. K., Klein, M., Hink, M. A., Postma, M., Vaitla, B., Noë, R., Shimizu, T. S., West, S. A., et al. (2019). Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Current Biology 29, 2043-2050.
Willner, I., Patolsky, F. & Wasserman, J. (2001). Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angewandte Chemie - International Edition 40, 1861-1864.
Winnik, F. M. & Maysinger, D. (2013). Quantum dot cytotoxicity and ways to reduce it. Accounts of Chemical Research 46, 672-680.
Wu, C., Bull, B., Szymanski, C., Christensen, K. & McNeill, J. (2008). Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2, 2415-2423.
Wu, C. & Chiu, D. T. (2013). Highly fluorescent semiconducting polymer dots for biology and medicine. Angewandte Chemie - International Edition 52, 3086-3109.
Wu, J. K., Ma, J. W., Wang, H., Qin, D. M., An, L., Ma, Y., Zheng, Z. T., De Hua, X., Wang, T. L. & Wu, X. J. (2019). Rapid and visual detection of benzothiostrobin residue in strawberry using quantum dot-based lateral flow test strip. Sensors and Actuators, B: Chemical 283, 222-229.
Wu, P., Li, Y. & Yan, X. P. (2009). CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton hybrid system for sensitive photoluminescent detection of Fe2+. Analytical Chemistry 81, 6252-6257.
Wu, P. & Yan, X. P. (2010). Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosensors and Bioelectronics 26, 485-490.
Wu, S., Zhang, H., Shi, Z., Duan, N., Fang, C. C., Dai, S. & Wang, Z. (2015). Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50, 597-604.
Xia, C., Zhu, S., Feng, T., Yang, M. & Yang, B. (2019). Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Advanced Science 6, 1901316.
Xiao, A., Wang, C., Chen, J., Guo, R., Yan, Z. & Chen, J. (2016). Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety 133, 211-217.
Xie, W. Y., Huang, W. T., Luo, H. Q. & Li, N. B. (2012). CTAB-capped Mn-doped ZnS quantum dots and label-free aptamer for room-temperature phosphorescence detection of mercury ions. Analyst 137, 4651-4653.
Xu, G., Zeng, S., Zhang, B., Swihart, M. T., Yong, K. T. & Prasad, P. N. (2016). New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chemical Reviews 116, 12234-12327.
Xu, J., Jie, X., Xie, F., Yang, H., Wei, W. & Xia, Z. (2018). Flavonoid moiety-incorporated carbon dots for ultrasensitive and highly selective fluorescence detection and removal of Pb2+. Nano Research 11, 3648-3657.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K. & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society 126, 12736-12737.
Xue, R., Fu, L., Dong, S., Yang, H. & Zhou, D. (2020). Promoting Chlorella photosynthesis and bioresource production using directionally prepared carbon dots with tunable emission. Journal of Colloid and Interface Science 569, 195-203.
Yadav, P., Nishanthi, S. T., Purohit, B., Shanavas, A. & Kailasam, K. (2019). Metal free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study. Carbon 152, 587-597.
Yaghini, E., Turner, H. D., Le Marois, A. M., Suhling, K., Naasani, I. & MacRobert, A. J. (2016). In vivo biodistribution studies and ex vivo lymph node imaging using heavy metal-free quantum dots. Biomaterials 104, 182-191.
Yan, S., Zeng, X., Tang, Y., Liu, B., Wang, Y. & Liu, X. (2019). Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core-shell upconversion nanoparticles. Advanced Materials 31, 1905825.
Yang, L., Kuang, H., Zhang, W., Wei, H. & Xu, H. (2018a). Quantum dots cause acute systemic toxicity in lactating rats and growth restriction of offspring. Nanoscale 10, 11564-11577.
Yang, S. T., Wang, X., Wang, H., Lu, F., Luo, P. G., Cao, L., Meziani, M. J., Liu, J. H., Liu, Y., Chen, M., Huang, Y. & Sun, Y. P. (2009). Carbon dots as nontoxic and high-performance fluorescence imaging agents. Journal of Physical Chemistry C 113, 18110-18114.
Yang, Y., Huo, D., Wu, H., Wang, X., Yang, J., Bian, M., Ma, Y. & Hou, C. (2018b). N, P-doped carbon quantum dots as a fluorescent sensing platform for carbendazim detection based on fluorescence resonance energy transfer. Sensors and Actuators, B: Chemical 274, 296-303.
Yang, Y., Lv, S., Wang, F., An, Y., Fang, N., Zhang, W., Zhao, W., Guo, X. & Ji, S. (2019). Toxicity and serum metabolomics investigation of Mn-doped ZnS quantum dots in mice. International Journal of Nanomedicine 14, 6297-6311.
Yang, Z., Loh, K. Y., Te Chu, Y., Feng, R., Satyavolu, N. S. R., Xiong, M., Nakamata Huynh, S. M., Hwang, K., Li, L., Xing, H., Zhang, X., Chemla, Y. R., Gruebele, M. & Lu, Y. (2018c). Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles. Journal of the American Chemical Society 140, 17656-17665.
Yao, J., Yang, M. & Duan, Y. (2014). Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chemical Reviews 144, 6130-6178.
Yi, Y., Zhu, G., Liu, C., Huang, Y., Zhang, Y., Li, H., Zhao, J. & Yao, S. (2013). A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Analytical Chemistry 85, 11464-11470.
Yong, K. T., Ding, H., Roy, I., Law, W. C., Bergey, E. J., Maitra, A. & Prasad, P. N. (2009). Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3, 502-510.
Yu, G., Liang, J., He, Z. & Sun, M. (2006). Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chemistry and Biology 13, 723-731.
Yu, G., Tan, Y., He, X., Qin, Y. & Liang, J. (2014). CLAVATA3 dodecapeptide modified CdTe nanoparticles: a biocompatible quantum dot probe for in vivo labeling of plant stem cells. PLoS One 9, e89241.
Zare-Moghadam, M., Shamsipur, M., Molaabasi, F. & Hajipour-Verdom, B. (2020). Chromium speciation by isophthalic acid-doped polymer dots as sensitive and selective fluorescent probes. Talanta 209, 120521.
Zhang, L., Wang, J., Deng, J. & Wang, S. (2020). A novel fluorescent “turn-on” aptasensor based on nitrogen-doped graphene quantum dots and hexagonal cobalt oxyhydroxide nanoflakes to detect tetracycline. Analytical and Bioanalytical Chemistry 412, 1343-1351.
Zhang, M., Su, R., Zhong, J., Fei, L., Cai, W., Guan, Q., Li, W., Li, N., Chen, Y., Cai, L. & Xu, Q. (2019a). Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Research 12, 815-821.
Zhang, M., Wang, H., Liu, P., Song, Y., Huang, H., Shao, M., Liu, Y., Li, H. & Kang, Z. (2019b). Biotoxicity of degradable carbon dots towards microalgae: Chlorella vulgaris. Environmental Science: Nano 6, 3316-3323.
Zhang, M., Wang, H., Song, Y., Huang, H., Shao, M., Liu, Y., Li, H. & Kang, Z. (2018). Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Applied Bio Materials 1, 894-902.
Zhang, M., Wang, H., Wang, B., Ma, Y., Huang, H., Liu, Y., Shao, M., Yao, B. & Kang, Z. (2019c). Maltase decorated by chiral carbon dots with inhibited enzyme activity for glucose level control. Small 15, 1901512.
Zhang, N., Zhang, L., Ruan, Y. F., Zhao, W. W., Xu, J. J. & Chen, H. Y. (2017). Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosensors and Bioelectronics 94, 207-218.
Zhang, S., Zhang, D., Ding, Y., Hua, J., Tang, B., Ji, X., Zhang, Q., Wei, Y., Qin, K. & Li, B. (2019). Bacteria-derived fluorescent carbon dots for highly selective detection of P -nitrophenol and bioimaging. Analyst 144, 5497-5503.
Zhang, X., Jiang, M., Niu, N., Chen, Z., Li, S., Liu, S. & Li, J. (2018a). Natural-product-derived carbon dots: from natural products to functional materials. ChemSusChem 11, 11-24.
Zhang, X., Yin, J., Kang, C., Li, J., Zhu, Y., Li, W., Huang, Q. & Zhu, Z. (2010). Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicology Letters 198, 237-243.
Zhang, X., Yu, X., Wang, J., Wang, Q., Meng, H. & Wang, Z. (2018b). One-step core/multishell quantum dots-based fluoroimmunoassay for screening of deoxynivalenol in maize. Food Analytical Methods 11, 2569-2578.
Zhao, J., Deng, J., Yi, Y., Li, H., Zhang, Y. & Yao, S. (2014). Label-free silicon quantum dots as fluorescent probe for selective and sensitive detection of copper ions. Talanta 125, 372-377.
Zhao, W., Xiang, Y., Xu, J., He, X. & Zhao, P. (2020). The reversible surface redox of polymer dots for the assay of total antioxidant capacity in food samples. Microchemical Journal 156, 104805.
Zheng, M., Ruan, S., Liu, S., Sun, T., Qu, D., Zhao, H., Xie, Z., Gao, H., Jing, X. & Sun, Z. (2015a). Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9, 11455-11461.
Zheng, M., Wang, Y., Wang, C., Wei, W., Ma, S., Sun, X. & He, J. (2018). Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta 185, 309-315.
Zheng, X. T., Ananthanarayanan, A., Luo, K. Q. & Chen, P. (2015b). Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620-1636.
Zheng, Y., Zhang, H., Li, W., Liu, Y., Zhang, X., Liu, H. & Lei, B. (2017). Pollen derived blue fluorescent carbon dots for bioimaging and monitoring of nitrogen, phosphorus and potassium uptake in Brassica parachinensis L. RSC Advances 7, 33459-33465.
Zheng, Z., Zhou, Y., Li, X., Liu, S. & Tang, Z. (2011). Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosensors and Bioelectronics 26, 3081-3085.
Zhou, R., Li, M., Wang, S., Wu, P., Wu, L. & Hou, X. (2014). Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. Nanoscale 6, 14319-14325.
Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J. & Yang, B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research 8, 355-381.
Zou, Z., Du, D., Wang, J., Smith, J. N., Timchalk, C., Li, Y. & Lin, Y. (2010). Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Analytical Chemistry 82, 5125-5133.
Zuo, P., Lu, X., Sun, Z., Guo, Y. & He, H. (2016). A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta 183, 519-542. - Contributed Indexing: Keywords: alternative quantum dots; bioimaging; biosensing; fluorescence techniques; fluorescent carbon nanoparticles; fluorescent labelling; molecular tracking; nanoparticles in biology; nanotechnology; quantum dots
- Publication Date: Date Created: 20210618 Date Completed: 20211025 Latest Revision: 20211025
- Publication Date: 20240829
- Accession Number: 10.1111/brv.12758
- Accession Number: 34142416
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.