Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Nature Country of Publication: England NLM ID: 101696896 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2157-846X (Electronic) Linking ISSN: 2157846X NLM ISO Abbreviation: Nat Biomed Eng Subsets: MEDLINE
    • Publication Information:
      Publication: London : Springer Nature
      Original Publication: [London] : Macmillan Publishers Limited, [2016]-
    • Subject Terms:
    • Abstract:
      Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidney disease and type 2 diabetes solely from fundus images or in combination with clinical metadata (age, sex, height, weight, body-mass index and blood pressure) with areas under the receiver operating characteristic curve of 0.85-0.93. The models were trained and validated with a total of 115,344 retinal fundus photographs from 57,672 patients and can also be used to predict estimated glomerulal filtration rates and blood-glucose levels, with mean absolute errors of 11.1-13.4 ml min -1 per 1.73 m 2 and 0.65-1.1 mmol l -1 , and to stratify patients according to disease-progression risk. We evaluated the generalizability of the models for the identification of chronic kidney disease and type 2 diabetes with population-based external validation cohorts and via a prospective study with fundus images captured with smartphones, and assessed the feasibility of predicting disease progression in a longitudinal cohort.
    • Comments:
      Comment in: Nat Biomed Eng. 2021 Jun;5(6):487-489. (PMID: 34131320)
    • References:
      GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020). (PMID: 10.1016/S0140-6736(20)30045-3)
      Levin, A. et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390, 1888–1917 (2017). (PMID: 10.1016/S0140-6736(17)30788-2)
      Kooman, J. P., Kotanko, P., Schols, A. M., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol. 10, 732–742 (2014). (PMID: 10.1038/nrneph.2014.185)
      Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019). (PMID: 10.1016/j.diabres.2019.107843)
      Wong, T. Y. & Sabanayagam, C. The war on diabetic retinopathy: where are we now. Asia Pac. J. Ophthalmol. 8, 448–456 (2019). (PMID: 10.1097/APO.0000000000000267)
      Balakumar, P., Maung, U. K. & Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 113, 600–609 (2016). (PMID: 10.1016/j.phrs.2016.09.040)
      From the Center of Disease Control and Prevention. Lower extremity amputation episodes among persons with diabetes–New Mexico, 2000. JAMA 289, 1502–1503 (2003). (PMID: 10.1001/jama.289.12.1502)
      American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care 43, S135–S151 (2020). (PMID: 10.2337/dc20-S011)
      Luk, A. O. et al. Quality of care in patients with diabetic kidney disease in Asia: The Joint Asia Diabetes Evaluation (JADE) Registry. Diabet. Med. 33, 1230–1239 (2016). (PMID: 10.1111/dme.13014)
      Wu, B., Zhang, S., Lin, H. & Mou, S. Prevention of renal failure in Chinese patients with newly diagnosed type 2 diabetes: a cost-effectiveness analysis. J. Diabetes Investig. 9, 152–161 (2018). (PMID: 10.1111/jdi.12653)
      Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019). (PMID: 10.1038/s41591-018-0316-z)
      Cheung, C. Y., Tang, F., Ting, D. S. W., Tan, G. S. W. & Wong, T. Y. Artificial intelligence in diabetic eye disease screening. Asia Pac. J. Ophthalmol. 8, 158–164 (2019).
      Ravizza, S. et al. Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data. Nat. Med. 25, 57–59 (2019). (PMID: 10.1038/s41591-018-0239-8)
      Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019). (PMID: 10.1038/s41591-018-0300-7)
      Wang, K., Liu, X., Zhang, K., Chen, T. & Wang, G. Anterior segment eye lesion segmentation with advanced fusion strategies and auxiliary tasks. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 12265, 656–664 (Springer, 2020).
      Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131(2018). (PMID: 10.1016/j.cell.2018.02.010)
      Liang, H. et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat. Med. 25, 433–438 (2019). (PMID: 10.1038/s41591-018-0335-9)
      Wang, G. et al. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00704-1 (2021).
      Poplin, R. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018). (PMID: 10.1038/s41551-018-0195-0)
      Rim, T. H. et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digit. Health 2, e526–e536 (2020). (PMID: 10.1016/S2589-7500(20)30216-8)
      Sabanayagam, C. et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. Lancet Digit. Health 2, e295–e302 (2020). (PMID: 10.1016/S2589-7500(20)30063-7)
      Liu, T. Y. A. Smartphone-based, artificial intelligence-enabled diabetic retinopathy screening. JAMA Ophthalmol. 137, 1188–1189 (2019). (PMID: 10.1001/jamaophthalmol.2019.2883)
      Chen, C., Lee, G. G., Sritapan, V. & Lin, C. Deep convolutional neural network on iOS mobile devices. In 2016 IEEE International Workshop on Signal Processing Systems (SiPS) 130–135 (IEEE, 2016); https://doi.org/10.1109/SiPS.2016.31.
      Wu, Y., Lim, J. & Yang, M. H. Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1834–1848 (2015). (PMID: 10.1109/TPAMI.2014.2388226)
      Schroff, F., Kalenichenko, D. & Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 815–823 (IEEE, 2015); https://doi.org/10.1109/CVPR.2015.7298682.
      Vos, T. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016). (PMID: 10.1016/S0140-6736(16)31678-6)
      Gansevoort, R. T. et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 80, 93–104 (2011). (PMID: 10.1038/ki.2010.531)
      Levey, A. S. & Coresh, J. Chronic kidney disease. Lancet 379, 165–180 (2012). (PMID: 10.1016/S0140-6736(11)60178-5)
      Group, E. T. D. R. S. R. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology 98, 786–806 (1991). (PMID: 10.1016/S0161-6420(13)38012-9)
      Tuot, D. S. et al. Chronic kidney disease awareness among individuals with clinical markers of kidney dysfunction. Clin. J. Am. Soc. Nephrol.6, 1838–1844 (2011). (PMID: 10.2215/CJN.00730111)
      Tuttle, K. R. et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Am. J. Kidney Dis. 64, 510–533 (2014). (PMID: 10.1053/j.ajkd.2014.08.001)
      Wang, Y. et al. China suboptimal health cohort study: rationale, design and baseline characteristics. J. Transl. Med. 14, 291 (2016). (PMID: 10.1186/s12967-016-1046-y)
      Levin, A. et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013). (PMID: 10.1038/kisup.2012.73)
      Levey, A. S., Becker, C. & Inker, L. A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313, 837–846 (2015). (PMID: 10.1001/jama.2015.0602)
      Bikbov, B. et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020). (PMID: 10.1016/S0140-6736(20)30045-3)
      Liao, Y., Liao, W., Liu, J., Xu, G. & Zeng, R. Assessment of the CKD-EPI equation to estimate glomerular filtration rate in adults from a Chinese CKD population. J. Int. Med. Res. 39, 2273–2280 (2011). (PMID: 10.1177/147323001103900624)
      Pisano, E. D. et al. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digital Imaging 11, 193–200 (1998). (PMID: 10.1007/BF03178082)
      Liu, P. et al. Large-scale left and right eye classification in retinal images. Comput. Pathol. Ophthalmic Med. Image Anal. 11039, 261–268 (2018). (PMID: 10.1007/978-3-030-00949-6_31)
      He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016); https://doi.org/10.1109/CVPR.2016.90.
      Kamarudin, A. N., Cox, T. & Kolamunnage-Donà, R. Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med. Res. Method. 17, 53 (2017). (PMID: 10.1186/s12874-017-0332-6)
      Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. of the 34th International Conference on Machine Learning-Volume 70 3319 (2017).
      Giavarina, D. Understanding Bland Altman analysis. Biochemia Med. 25, 141–151 (2015). (PMID: 10.11613/BM.2015.015)
      Breslow, N. & Day, N. Statistical Methods in Cancer Research. Volume II–The Design and Analysis of Cohort Studies 82, 1–406 (IARC Scientific Publications, 1987).
    • Grant Information:
      216593/Z/19/Z United Kingdom WT_ Wellcome Trust
    • Accession Number:
      0 (Blood Glucose)
    • Publication Date:
      Date Created: 20210616 Date Completed: 20210831 Latest Revision: 20211001
    • Publication Date:
      20231215
    • Accession Number:
      10.1038/s41551-021-00745-6
    • Accession Number:
      34131321