Ozone nanobubble treatments improve survivability of Nile tilapia (Oreochromis niloticus) challenged with a pathogenic multi-drug-resistant Aeromonas hydrophila.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9881188 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2761 (Electronic) Linking ISSN: 01407775 NLM ISO Abbreviation: J Fish Dis Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, Blackwell Scientific Publications.
    • Subject Terms:
    • Abstract:
      A rapid increase in multi-drug-resistant (MDR) bacteria in aquaculture highlights the risk of production losses due to diseases and potential public health concerns. Previously, we reported that ozone nanobubbles (NB-O 3 ) were effective at reducing concentrations of pathogenic bacteria in water and modulating fish immunity against pathogens; however, multiple treatments with direct NB-O 3 exposures caused alterations to the gills of exposed fish. Here, we set up a modified recirculation system (MRS) assembled with an NB-O 3 device (MRS-NB-O 3 ) to investigate whether MRS-NB-O 3 (a) were safe for tilapia (Oreochromis niloticus), (b) were effective at reducing bacterial load in rearing water and (c) improved survivability of Nile tilapia following an immersion challenge with a lethal dose of MDR Aeromonas hydrophila. The results showed no behavioural abnormalities or mortality of Nile tilapia during the 14-day study using the MRS-NB-O 3 system. In the immersion challenge, although high bacterial concentration (~2 × 10 7  CFU/ml) was used, multiple NB-O 3 treatments in the first two days reduced the bacteria between 15.9% and 35.6% of bacterial load in water, while bacterial concentration increased from 13.1% to 27.9% in the untreated control. There was slight up-regulation of non-specific immune-related genes in the gills of the fish receiving NB-O 3 treatments. Most importantly, this treatment significantly improved survivability of Nile tilapia with relative percentage survival (RPS) of 64.7% - 66.7% in treated fish and surviving fish developed specific antibody against MDR A. hydrophila. In summary, the result suggests that NB-O 3 is a promising non-antibiotic approach to control bacterial diseases, including MDR bacteria, and has high potential for application in recirculation aquaculture system (RAS).
      (© 2021 John Wiley & Sons Ltd.)
    • References:
      Abass, D. A., Obirikorang, K. A., Campion, B. B., Edziyie, R. E., & Skov, P. V. (2018). Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquaculture International, 26(3), 843-855. https://doi.org/10.1007/s10499-018-0255-1.
      Abdel-Tawwab, M. (2012). The use of American ginseng (Panax quinquefolium) in practical diets for Nile tilapia (Oreochromis niloticus): Growth performance and challenge with Aeromonas hydrophila. Journal of Applied Aquaculture, 24(4), 366-376. https://doi.org/10.1080/10454438.2012.733593.
      Abraham, T. J., Anwesha, R., Julinta, R. B., Singha, J., & Patil, P. K. (2017). Efficacy of oxytetracycline and potentiated sulphonamide oral therapies against Aeromonas hydrophila infection in Nile tilapia Oreochromis niloticus. Journal of Coastal Life Medicine, 5(9), 371-374. https://doi.org/10.12980/jclm.5.2017J7-89.
      Agarwal, A., Ng, W. J., & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175-1180. https://doi.org/10.1016/j.chemosphere.2011.05.054.
      Anand, T., Vaid, R. K., Bera, B. C., Singh, J., Barua, S., Virmani, N., Yadav, N. K., Nagar, D., Singh, R. K., & Tripathi, B. (2016). Isolation of a lytic bacteriophage against virulent Aeromonas hydrophila from an organized equine farm. Journal of Basic Microbiology, 56(4), 432-437. https://doi.org/10.1002/jobm.201500318.
      Baumgartner, W., Griffin, M., Tekedar, H., Lawrence, M., Rasmussen-Ivey, C., & Liles, M. (2018). Experience with mortalities of cultured catfish Ictalurus punctatus (Rafinesque 1818) and I. punctatus x I. furcatus (Valenciennes 1840) caused by highly virulent strains of Aeromonas hydrophila. Asian Fisheries Society, 31, 59-75. https://doi.org/10.33997/j.afs.2018.31.S1.004.
      Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483-493. https://doi.org/10.1016/j.envres.2018.11.040.
      Bowden, T. J. (2008). Modulation of the immune system of fish by their environment. Fish & Shellfish Immunology, 25(4), 373-383. https://doi.org/10.1016/j.fsi.2008.03.017.
      Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7), 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x.
      Cantas, L., & Suer, K. (2014). The important bacterial zoonoses in “One Health” concept. Frontiers in Public Health, 2, 144. https://doi.org/10.3389/fpubh.2014.00144.
      Cecchini, S., & Saroglia, M. (2002). Antibody response in sea bass (Dicentrarchus labrax L.) in relation to water temperature and oxygenation. Aquaculture Research, 33(8), 607-613. https://doi.org/10.1046/j.1365-2109.2002.00698.x.
      Da Silva, B. C., Mouriño, J. L. P., Vieira, F. N., Jatobá, A., Seiffert, W. Q., & Martins, M. L. (2012). Haemorrhagic septicaemia in the hybrid surubim (Pseudoplatystoma corruscans × Pseudoplatystoma fasciatum) caused by Aeromonas hydrophila. Aquaculture Research, 43(6), 908-916. https://doi.org/10.1111/j.1365-2109.2011.02905.x.
      Dawood, M. A., Moustafa, E. M., Elbialy, Z. I., Farrag, F., Lolo, E. E., Abdel-Daim, H. A., Abdel-Daim, M. M., & Van Doan, H. (2020). Lactobacillus plantarum L-137 and/or β-glucan impacted the histopathological, antioxidant, immune-related genes and resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Research in Veterinary Science, 130, 212-221. https://doi.org/10.1016/j.rvsc.2020.03.019.
      Ellis, A. E. (Ed.) (1988). General principles of fish vaccination. In Fish Vaccination (pp. 1-19). Academic Press.
      Fan, W., An, W. G., Huo, M. X., Yang, W., Zhu, S. Y., & Lin, S. S. (2020). Solubilization and stabilization for prolonged reactivity of ozone using micro-nano bubbles and ozone-saturated solvent: A promising enhancement for ozonation. Separation and Purification Technology, 238, 116484. https://doi.org/10.1016/j.seppur.2019.116484.
      Gurung, A., Dahl, O., & Jansson, K. (2016). The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies. Geosystem Engineering, 19(3), 133-142. https://doi.org/10.1080/12269328.2016.1153987.
      Harrigan, W. F., & McCance, M. E. (2014). Laboratory methods in microbiology. Elsevier Science.
      Hayatgheib, N., Moreau, E., Calvez, S., Lepelletier, D., & Pouliquen, H. (2020). A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquaculture International, 28(3), 1083-1123. https://doi.org/10.1007/s10499-020-00514-3.
      Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49(8), 1248-1253. https://doi.org/10.1086/605667.
      Hossain, M. J., Sun, D., McGarey, D. J., Wrenn, S., Alexander, L. M., Martino, M. E., Xing, Y., Terhune, J. S., & Liles, M. R. (2014). An Asian origin of virulent Aeromonas hydrophila responsible for disease epidemics in United States-farmed catfish. Mbio, 5(3), e00848-14. https://doi.org/10.1128/mBio.00848-14.
      Hugo, W. B., Ayliffe, G., & Russell, A. D. (1999). Principles and Practice of Disinfection, Preservation, and Sterilisation. Blackwell Science.
      Imaizumi, K., Tinwongger, S., Kondo, H., & Hirono, I. (2018). Disinfection of an EMS/AHPND strain of Vibrio parahaemolyticus using ozone nanobubbles. Journal of Fish Diseases, 41(4), 725-727. https://doi.org/10.1111/jfd.12783.
      Jhunkeaw, C., Khongcharoen, N., Rungrueng, N., Sangpo, P., Panphut, W., Thapinta, A., Senapin, S., St-Hilaire, S., & Dong, H. T. (2021). Ozone nanobubble treatment in freshwater effectively reduced pathogenic fish bacteria and is safe for Nile tilapia (Oreochromis niloticus). Aquaculture, 534, 736286. https://doi.org/10.1016/j.aquaculture.2020.736286.
      Julinta, R. B., Roy, A., Singha, J., Abraham, T. J., & Patil, P. (2017). Evaluation of efficacy of oxytetracycline oral and bath therapies in Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. International Journal of Current Microbiology and Applied Sciences, 6(7), https://doi.org/10.20546/ijcmas.2016.501.008.
      Kurita, Y., Chiba, I., & Kijima, A. (2017). Physical eradication of small planktonic crustaceans from aquaculture tanks with cavitation treatment. Aquaculture International, 25(6), 2127-2133. https://doi.org/10.1007/s10499-017-0179-1.
      Li, X., Blancheton, J. P., Liu, Y., Triplet, S., & Michaud, L. (2014). Effect of oxidation-reduction potential on performance of European sea bass (Dicentrarchus labrax) in recirculating aquaculture systems. Aquaculture International, 22(4), 1263-1282. https://doi.org/10.1007/s10499-013-9745-3.
      Linh, N. V., Dien, L. T., Panphut, W., Thapinta, A., Senapin, S., St-Hilaire, S., Rodkhum, C., & Dong, H. T. (2021). Ozone nanobubble modulates the innate defense system of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae. Fish and Shellfish Immunology., 112, 64-73. https://doi.org/10.1016/j.fsi.2021.02.015.
      Liu, M., Pan, J., Ji, H., Zhao, B., & Zhang, S. (2011). Vitellogenin mediates phagocytosis through interaction with FcγR. Molecular Immunology, 49(1-2), 211-218. https://doi.org/10.1016/j.molimm.2011.08.011.
      Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262.
      Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
      Magnadóttir, B. (2006). Innate immunity of fish (overview). Fish & Shellfish Immunology, 20(2), 137-151. https://doi.org/10.1016/j.fsi.2004.09.006.
      Mahasri, G., Saskia, A., Apandi, P., Dewi, N., & Usuman, N. (2018). Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus). Paper presented at the IOP Conference Series. Earth and Environmental Science.
      Malik, B., & Bhattacharyya, S. (2019). Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-46078-y.
      Mauladani, S., Rahmawati, A. I., Absirin, M. F., Saputra, R. N., Pratama, A. F., Hidayatullah, A., Dwiarto, A., Syarif, A., Junaedi, H., & Cahyadi, D. (2020). Economic feasibility study of Litopenaeus vannamei shrimp farming: Nanobubble investment in increasing harvest productivity. Jurnal Akuakultur Indonesia, 19(1), 30-38. https://doi.org/10.1371/journal.pone.0196555.
      Megahed, A., Aldridge, B., & Lowe, J. (2018). The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS One, 13(5), e0196555. https://doi.org/10.1371/journal.pone.0196555.
      Navarro, A., & Martínez-Murcia, A. (2018). Phylogenetic analyses of the genus Aeromonas based on housekeeping gene sequencing and its influence on systematics. Journal of Applied Microbiology, 125(3), 622-631. https://doi.org/10.1111/jam.13887.
      Ngamkala, S., Futami, K., Endo, M., Maita, M., & Katagiri, T. (2010). Immunological effects of glucan and Lactobacillus rhamnosus GG, a probiotic bacterium, on Nile tilapia Oreochromis niloticus intestine with oral Aeromonas challenges. Fisheries Science, 76(5), 833-840. https://doi.org/10.1007/s12562-010-0280-0.
      Nghia, N. H., Van, P. T., Giang, P. T., Hanh, N. T., St-Hilaire, S., & Domingos, J. A. (2021). Control of Vibrio parahaemolyticus (AHPND strain) and improvement of water quality using nanobubble technology. Aquaculture Research, in press. https://doi.org/10.1111/are.15124.
      Okocha, R. C., Olatoye, I. O., & Adedeji, O. B. (2018). Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Reviews, 39(1), 1-22. https://doi.org/10.1186/s40985-018-0099-2.
      Payung, C. N., Tumbol, R. A., & Manoppo, H. (2017). Dietary ginger (Zingiber officinale) enhance resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Aquaculture, Aquarium, Conservation & Legislation, 10(4), 962-968.
      Peterman, M. A., & Posadas, B. C. (2019). Direct economic impact of fish diseases on the East Mississippi catfish industry. North American Journal of Aquaculture, 81(3), 222-229. https://doi.org/10.1002/naaq.10090.
      Powell, A., & Scolding, J. W. (2018). Direct application of ozone in aquaculture systems. Reviews in Aquaculture, 10(2), 424-438. https://doi.org/10.1111/raq.12169.
      Pridgeon, J. W., & Klesius, P. H. (2011). Virulence of Aeromonas hydrophila to channel catfish Ictaluras punctatus fingerlings in the presence and absence of bacterial extracellular products. Diseases of Aquatic Organisms, 95(3), 209-215. https://doi.org/10.3354/dao02357.
      Pridgeon, J. W., & Klesius, P. H. (2012). Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews: Perspective in Agriculture, Veterinary Science, Nutrition and Natural Resources., 7(48), 1-7. https://doi.org/10.1079/PAVSNNR20127048.
      Qiang, J., He, J., Yang, H., Xu, P., Habte-Tsion, H. M., Ma, X., & Zhu, Z. (2016). The changes in cortisol and expression of immune genes of GIFT tilapia Oreochromis niloticus (L.) at different rearing densities under Streptococcus iniae infection. Aquaculture International, 24(5), 1365-1378. https://doi.org/10.1007/s10499-016-9995-y.
      Qingshi, Z., Cunli, L., & Zhengyu, X. (1989). A study of contacting systems in water and wastewater disinfection by ozone. 1. Mechanism of ozone transfer and inactivation related to the contacting method selection. The Journal of International Ozone Association, 11(2), 169-188. https://doi.org/10.1080/01919518908552434.
      Rahmawati, A. I., Saputra, R. N., Hidayatullah, A., Dwiarto, A., Junaedi, H., Cahyadi, D., Saputra, H. K. H., Prabowo, W. T., Kartamiharja, U. K. A., Shafira, H., Noviyanto, A., & Rochman, N. T. (2020). Enhancement of Penaeus vannamei shrimp growth using nanobubble in indoor raceway pond. Aquaculture and Fisheries, 6(3), 277-282. https://doi.org/10.1016/j.aaf.2020.03.005.
      Rasmussen-Ivey, C. R., Hossain, M. J., Odom, S. E., Terhune, J. S., Hemstreet, W. G., Shoemaker, C. A., Zhang, D., Xu, D.-H., Griffin, M. J., Liu, Y.-J., Figueras, M. J., Santos, S. R., Newton, J. C., & Liles, M. R. (2016). Classification of a hypervirulent Aeromonas hydrophila pathotype responsible for epidemic outbreaks in warm-water fishes. Frontiers in Microbiology, 7, 1615. https://doi.org/10.3389/fmicb.2016.01615.
      Reverter, M., Sarter, S., Caruso, D., Avarre, J.-C., Combe, M., Pepey, E., Pouyaud, L., Vega-Heredía, S., De Verdal, H., & Gozlan, R. E. (2020). Aquaculture at the crossroads of global warming and antimicrobial resistance. Nature Communications, 11(1), 1-8. https://doi.org/10.1038/s41467-020-15735-6.
      Roberts, R., Agius, C., Saliba, C., Bossier, P., & Sung, Y. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. Journal of Fish Diseases, 33(10), 789-801. https://doi.org/10.1111/j.1365-2761.2010.01183.x.
      Romano, N., Scapigliati, G., & Abelli, L. (2017). Water oxygen content affects distribution of T and B lymphocytes in lymphoid tissues of farmed sea bass (Dicentrarchus labrax). Fishes, 2(3), 16. https://doi.org/10.3390/fishes2030016.
      Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010.
      Saurabh, S., & Sahoo, P. (2008). Lysozyme: An important defence molecule of fish innate immune system. Aquaculture Research, 39(3), 223-239. https://doi.org/10.1111/j.1365-2109.2007.01883.x.
      Soonthonsrima, T., Wangman, P., Chaivisuthangkura, P., Pengsuk, C., Sithigorngul, P., & Longyant, S. (2019). Generation of mouse monoclonal antibodies specific to tilapia immunoglobulin using fish immunoglobulin/BSA complex for monitoring of the immune response in Nile tilapia Oreochromis niloticus. Aquaculture Research, 50(1), 277-283. https://doi.org/10.1111/are.13894.
      Stiller, K. T., Kolarevic, J., Lazado, C. C., Gerwins, J., Good, C., Summerfelt, S. T., Mota, V. C., & Espmark, Å. M. (2020). The effects of ozone on Atlantic salmon post-smolt in brackish water - Establishing welfare indicators and thresholds. International Journal of Molecular Sciences, 21(14), 5109. https://doi.org/10.3390/ijms21145109.
      Suprayudi, M. A., Maeda, M., Hidayatullah, H., Widanarni, W., Setiawati, M., & Ekasari, J. (2017). The positive contributions of PowerLac™ supplementation to the production performance, feed utilization and disease resistance of Nile tilapia Oreochromis niloticus (L.). Aquaculture Research, 48(5), 2145-2156. https://doi.org/10.1111/are.13052.
      Takahashi, M., Chiba, K., & Li, P. (2007). Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. The Journal of Physical Chemistry B, 111(39), 11443-11446. https://doi.org/10.1021/jp074727m.
      Tsuge, H. (2014). Micro-and Nanobubbles: Fundamentals and applications. CRC Press.
      Velázquez, J., Acosta, J., Lugo, J. M., Reyes, E., Herrera, F., González, O., Morales, A., Carpio, Y., & Estrada, M. P. (2018). Discovery of immunoglobulin T in Nile tilapia (Oreochromis niloticus): A potential molecular marker to understand mucosal immunity in this species. Developmental & Comparative Immunology, 88, 124-136. https://doi.org/10.1016/j.dci.2018.07.013.
      Whyte, S. K. (2007). The innate immune response of finfish - a review of current knowledge. Fish & Shellfish Immunology, 23(6), 1127-1151. https://doi.org/10.1016/j.fsi.2007.06.005.
      Zahran, E., El-Gawad, E. A. A., & Risha, E. (2018). Dietary Withania sominefera root confers protective and immunotherapeutic effects against Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 80, 641-650. https://doi.org/10.1016/j.fsi.2018.06.009.
    • Grant Information:
      International Development Research Centre; Chulalongkorn University
    • Contributed Indexing:
      Keywords: Aeromonas hydrophila; antimicrobial resistance; multidrug resistance; non-antibiotic approach; ozone nanobubbles
    • Accession Number:
      66H7ZZK23N (Ozone)
    • Publication Date:
      Date Created: 20210611 Date Completed: 20211101 Latest Revision: 20211101
    • Publication Date:
      20221213
    • Accession Number:
      10.1111/jfd.13451
    • Accession Number:
      34114245