CMAP Scan Examination of the First Dorsal Interosseous Muscle After Spinal Cord Injury.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Zong Y; Lu Z; Chen M; Li X; Stampas A; Deng L; Zhou P
  • Source:
    IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society [IEEE Trans Neural Syst Rehabil Eng] 2021; Vol. 29, pp. 1199-1205. Date of Electronic Publication: 2021 Jun 30.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: IEEE Country of Publication: United States NLM ID: 101097023 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1558-0210 (Electronic) Linking ISSN: 15344320 NLM ISO Abbreviation: IEEE Trans Neural Syst Rehabil Eng Subsets: MEDLINE
    • Publication Information:
      Original Publication: Piscataway, NJ : IEEE, c2001-
    • Subject Terms:
    • Abstract:
      The study assessed motor unit loss in muscles paralyzed by spinal cord injury (SCI) using a novel compound muscle action potential (CMAP) scan examination. The CMAP scan of the first dorsal interosseous (FDI) muscle was applied in tetraplegia (n = 13) and neurologically intact (n = 13) subjects. MScanFit was used for estimating motor unit numbers in each subject. The D50 value of the CMAP scan was also calculated. We observed a significant decrease in both CMAP amplitude and motor unit number estimation (MUNE) in paralyzed FDI muscles, as compared with neurologically intact muscles. Across all subjects, the CMAP (negative peak) amplitude was 8.01 ± 3.97 mV for the paralyzed muscles and 16.75 ± 3.55 mV for the neurologically intact muscles (p < 0.001). The CMAP scan resulted in a MUNE of 59 ± 37 for the paralyzed muscles, much lower than 108 ± 21 for the neurologically intact muscles (p < 0.001). No significant difference in D50 was observed between the two groups (p = 0.2). For the SCI subjects, there was no significant correlation between MUNE and CMAP amplitude, or any of the clinical assessments including pinch force, grip force, the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP) score, and SCI duration (p > 0.05). The findings provide an evidence of motor unit loss in the FDI muscles of individuals with tetraplegia, which may contribute to weakness and other hand function deterioration. The CMAP scan offers several practical benefits compared with the traditional MUNE techniques because it is noninvasive, automated and can be performed within several minutes.
    • References:
      Front Hum Neurosci. 2015 May 08;9:238. (PMID: 26005410)
      Clin Neurophysiol. 2016 Sep;127(9):3059-3065. (PMID: 27472541)
      Muscle Nerve. 2018 Nov;58(5):735-737. (PMID: 29981247)
      J Vis Exp. 2018 Jun 7;(136):. (PMID: 29939177)
      Clin Neurophysiol. 2014 Feb;125(2):388-95. (PMID: 23993681)
      Muscle Nerve. 1997 Feb;20(2):212-20. (PMID: 9040661)
      J Neurol Neurosurg Psychiatry. 1990 Oct;53(10):880-5. (PMID: 2266370)
      Clin Neurophysiol. 2019 Oct;130(10):1981-1987. (PMID: 31476704)
      Top Spinal Cord Inj Rehabil. 2013 Fall;19(4):300-10. (PMID: 24244095)
      J Neurophysiol. 2003 Apr;89(4):2065-71. (PMID: 12612012)
      Muscle Nerve. 2001 Jul;24(7):952-62. (PMID: 11410924)
      Brain. 1984 Mar;107 ( Pt 1):183-98. (PMID: 6697155)
      Spinal Cord. 2008 Oct;46(10):696-702. (PMID: 18332883)
      Arch Phys Med Rehabil. 2001 May;82(5):604-7. (PMID: 11346835)
      J Neural Eng. 2020 Feb 19;17(1):014001. (PMID: 31726441)
      Clin Neurophysiol. 2018 Aug;129(8):1507-1516. (PMID: 29804042)
      Muscle Nerve. 2016 Jun;53(6):889-96. (PMID: 26479267)
      Clin Neurophysiol. 2020 Jun;131(6):1280-1286. (PMID: 32305855)
      Am J Phys Med Rehabil. 1998 Mar-Apr;77(2):118-21. (PMID: 9558012)
      J Neurosci Methods. 2009 Dec 15;185(1):165-77. (PMID: 19761794)
      IEEE Trans Inf Technol Biomed. 2012 Nov;16(6):1143-9. (PMID: 22491097)
      Neurorehabil Neural Repair. 2010 Sep;24(7):657-65. (PMID: 20439500)
      Muscle Nerve. 2007 Aug;36(2):206-13. (PMID: 17487869)
      Exp Physiol. 1999 Nov;84(6):1151-60. (PMID: 10564711)
      Ann Neurol. 1990 Oct;28(4):496-502. (PMID: 2252362)
      J Brachial Plex Peripher Nerve Inj. 2012 Jun 18;7(1):4. (PMID: 22546084)
      Muscle Nerve. 2004 May;29(5):693-9. (PMID: 15116373)
      J Neurosci. 2011 Dec 14;31(50):18543-55. (PMID: 22171053)
      Muscle Nerve. 2019 Oct;60(4):400-408. (PMID: 31330055)
      Arch Phys Med Rehabil. 1991 Jan;72(1):23-7. (PMID: 1985619)
      Muscle Nerve. 2010 Nov;42(5):798-807. (PMID: 20976783)
      J Spinal Cord Med. 2019 Oct;42(sup1):149-157. (PMID: 31573454)
      Suppl Clin Neurophysiol. 2009;60:65-77. (PMID: 20715368)
      Biometrics. 2006 Dec;62(4):1235-50. (PMID: 17156299)
      Muscle Nerve. 2014 Dec;50(6):884-93. (PMID: 25186553)
      PM R. 2011 May;3(5):419-25; quiz 425. (PMID: 21570029)
      Arch Phys Med Rehabil. 1998 Sep;79(9):1062-8. (PMID: 9749685)
      Neurology. 1992 Mar;42(3 Pt 1):623-6. (PMID: 1549226)
      Muscle Nerve. 2018 Sep;58(3):374-380. (PMID: 29427557)
    • Grant Information:
      R01 HD092389 United States HD NICHD NIH HHS
    • Publication Date:
      Date Created: 20210609 Date Completed: 20210810 Latest Revision: 20220122
    • Publication Date:
      20221213
    • Accession Number:
      PMC8780215
    • Accession Number:
      10.1109/TNSRE.2021.3088061
    • Accession Number:
      34106858