Detection of carbapenemase producing enterobacteria using an ion sensitive field effect transistor sensor.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      The timely and accurate detection of carbapenemase-producing Enterobacterales (CPE) is imperative to manage this worldwide problem in an effective fashion. Herein we addressed the question of whether the protons produced during imipenem hydrolysis could be detected using an ion sensitive field effect transistor (ISFET). Application of the methodology on enzyme preparations showed that the sensor is able to detect carbapenemases of the NDM, IMP, KPC and NMC-A types at low nanomolar concentrations while VIM and OXA-48 responded at levels above 100 nM. Similar results were obtained when CPE cell suspensions were tested; NDM, IMP, NMC-A and KPC producers caused fast reductions of the output potential. Reduction rates with VIM-type and especially OXA-48 producing strains were significantly lower. Based on results with selected CPEs and carbapenemase-negative enterobacteria, a threshold of 10 mV drop at 30 min was set. Applying this threshold, the method exhibited 100% sensitivity for NDM, IMP and KPC and 77.3% for VIM producers. The OXA-48-positive strains failed to pass the detection threshold. A wide variety of carbapenemase-negative control strains were all classified as negative (100% specificity). In conclusion, an ISFET-based approach may have the potential to be routinely used for non OXA-48-like CPE detection in the clinical laboratory.
    • References:
      Nordmann, P., Naas, T. & Poirel, L. Global spread of carbapenemase-producing enterobacteriaceae. Emerg. Infect. Dis. 17, 1791–1798 (2011). (PMID: 22000347331068210.3201/eid1710.110655)
      Kostyanev, T. et al. Detection and prevalence of carbapenem-resistant Gram-negative bacteria among European laboratories in the COMBACTE network: A COMBACTE LAB-Net survey. Int. J. Antimicrob. Agents 53, 268–274 (2019). (PMID: 3039138110.1016/j.ijantimicag.2018.10.013)
      Martinez-Martinez, L. & Gonzalez-Lopez, J. J. Carbapenemases in Enterobacteriaceae: Types and molecular epidemiology. Enferm. Infecc. Microbiol. Clin. 32(Suppl 4), 4–9 (2014). (PMID: 2554204610.1016/S0213-005X(14)70168-5)
      Tzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., Tassios, P. T. & Daikos, G. L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 25, 682-+ (2012). (PMID: 23034326348575310.1128/CMR.05035-11)
      Queenan, A.M., Bush, K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 20, 440–458 (2007).
      Bush, K. & Bradford, P. A. Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat. Rev. Microbiol. 17, 295–306 (2019). (PMID: 3083768410.1038/s41579-019-0159-8)
      Kotsakis, S. D. et al. Laboratory evaluation of Brilliance CRE Agar for screening carbapenem-resistant Enterobacteriaceae: Performance on a collection of characterised clinical isolates from Greece. J. Glob. Antimicrob. Resist. 1, 85–90 (2013). (PMID: 2787358310.1016/j.jgar.2013.03.004)
      Bilozor, A. et al. Application of molecular methods for carbapenemase detection. Front. Microbiol. 10, 1755 (2019). (PMID: 31428068668777010.3389/fmicb.2019.01755)
      Glupczynski, Y. et al. Evaluation of two new commercial immunochromatographic assays for the rapid detection of OXA-48 and KPC carbapenemases from cultured bacteria. J. Antimicrob. Chemother 71, 1217–1222 (2016). (PMID: 2682512010.1093/jac/dkv472)
      Aguirre-Quinonero, A. & Martinez-Martinez, L. Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates. J. Infect. Chemother 23, 1–11 (2017). (PMID: 2776964610.1016/j.jiac.2016.09.008)
      Miriagou, V. et al. Combined disc methods for the detection of KPC- and/or VIM-positive Klebsiella pneumoniae: Improving reliability for the double carbapenemase producers. Clin. Microbiol. Infect. 19, E412-415 (2013). (PMID: 2362734010.1111/1469-0691.12238)
      Girlich, D., Poirel, L. & Nordmann, P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J. Clin. Microbiol. 50, 477–479 (2012). (PMID: 22116154326416310.1128/JCM.05247-11)
      Bernabeu, S., Poirel, L. & Nordmann, P. Spectrophotometry-based detection of carbapenemase producers among Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 74, 88–90 (2012). (PMID: 2272776810.1016/j.diagmicrobio.2012.05.021)
      Oviano, M., Bou, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the rapid detection of antimicrobial resistance mechanisms and beyond. Clin. Microbiol. Rev. 32, e00037–18 (2019).
      Papagiannitsis, C. C. et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH 4 HCO 3 , a reliable tool for direct detection of carbapenemase activity. J. Clin. Microbiol. 53, 1731–1735 (2015). (PMID: 25694522440074410.1128/JCM.03094-14)
      Noel, A. et al. Comparative Evaluation of Four Phenotypic Tests for Detection of Carbapenemase-Producing Gram-Negative Bacteria. J. Clin. Microbiol. 55, 510–518 (2017). (PMID: 27927915527752110.1128/JCM.01853-16)
      Saz, A. K., Lowery, D. L. & Jackson, L. J. Staphylococcal penicillinase. I. Inhibition and stimulation of activity. J. Bacteriol. 82, 298–304 (1961). (PMID: 1374700027915810.1128/jb.82.2.298-304.1961)
      Nordmann, P., Poirel, L. & Dortet, L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 18, 1503–1507 (2012). (PMID: 22932472343770710.3201/eid1809.120355)
      Pires, J., Novais, A. & Peixe, L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J. Clin. Microbiol. 51, 4281–4283 (2013). (PMID: 24108615383808910.1128/JCM.01634-13)
      Bogaerts, P. et al. Multicentre evaluation of the BYG Carba v2.0 test, a simplified electrochemical assay for the rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. Sci. Rep 7, 9937 (2017). (PMID: 28855689557712810.1038/s41598-017-09820-y)
      Bogaerts, P., Yunus, S., Massart, M., Huang, T. D. & Glupczynski, Y. Evaluation of the BYG carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. J. Clin. Microbiol. 54, 349–358 (2016). (PMID: 26637378473316410.1128/JCM.02404-15)
      Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng Bm17, 70- (1970). (PMID: 10.1109/TBME.1970.4502688)
      Bergveld, P. Thirty years of ISFETOLOGY—What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88, 1–20 (2003). (PMID: 10.1016/S0925-4005(02)00301-5)
      Jiang, Y. et al. A high-sensitivity potentiometric 65-nm CMOS ISFET sensor for rapid E. coli screening. IEEE Trans. Biomed. Circuits Syst. 12, 402–415 (2018). (PMID: 2957006610.1109/TBCAS.2018.2793861)
      Moser, N., Keeble, L., Rodriguez-Manzano, J., Georgiou, P. ISFET arrays for lab-on-chip technology: A review. https://doi.org/10.1109/icecs46596.2019.8965034:57-60 (2019).
      Matsuo, T. & Nakajima, H. Characteristics of reference electrodes using a polymer gate ISFET. Sens. Actuators 5, 293–305 (1984). (PMID: 10.1016/0250-6874(84)85013-1)
      Chudy, M., Wróblewski, W. & Brzózka, Z. Towards REFET. Sens. Actuators B Chem. 57, 47–50 (1999). (PMID: 10.1016/S0925-4005(99)00134-3)
      Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011). (PMID: 2177608110.1038/nature10242)
      Vanderschoot, B. & Bergveld, P. An isfet-based microliter titrator—integration of a chemical sensor actuator system. Sens. Actuators 8, 11–22 (1985). (PMID: 10.1016/0250-6874(85)80020-2)
      Toumazou, C. et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10, 641-646 (2013). (PMID: 10.1038/nmeth.2520)
      Papagiannitsis, C. C. et al. Characterization of metallo-beta-lactamase VIM-27, an A57S mutant of VIM-1 associated with Klebsiella pneumoniae ST147. Antimicrob. Agents Chemother 55, 3570–3572 (2011). (PMID: 21518835312246610.1128/AAC.00238-11)
      Nordmann, P., Mariotte, S., Naas, T., Labia, R. & Nicolas, M. H. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob. Agents Chemother 37, 939–946 (1993). (PMID: 851772018785610.1128/AAC.37.5.939)
      Miriagou, V. et al. Imipenem resistance in a salmonella clinical strain due to plasmid-mediated Class A carbapenemase KPC-2. Antimicrob. Agents Chemother. 47, 1297–1300 (2003). (PMID: 1265466115250510.1128/AAC.47.4.1297-1300.2003)
      Kotsakis, S. D., Papagiannitsis, C. C., Tzelepi, E., Tzouvelekis, L. S. & Miriagou, V. Extended-spectrum properties of CMY-30, a Val211Gly mutant of CMY-2 cephalosporinase. Antimicrob. Agents Chemother 53, 3520–3523 (2009). (PMID: 19470510271559810.1128/AAC.00219-09)
      Hachler, H. et al. Characterisation of CTX-M-117, a Pro174Gln variant of CTX-M-15 extended-spectrum beta-lactamase, from a bovine Escherichia coli isolate. Int. J. Antimicrob. Agents 41, 94–95 (2013). (PMID: 2312748110.1016/j.ijantimicag.2012.09.011)
      Kotsakis, S. D., Miriagou, V., Tzelepi, E. & Tzouvelekis, L. S. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES beta-lactamases. Antimicrob. Agents Chemother 54, 4864–4871 (2010). (PMID: 20696873297611310.1128/AAC.00771-10)
      Frohlich, C. et al. Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. J. Antimicrob. Chemother 75, 2554–2563 (2020). (PMID: 32464640744372010.1093/jac/dkaa175)
      Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997). (PMID: 909263014658410.1093/nar/25.6.1203)
      Voulgari, E. et al. Evaluation of the performance of Acuitas(R) Resistome Test and the Acuitas Lighthouse(R) software for the detection of beta-lactamase-producing microorganisms. J. Glob. Antimicrob. Resist. 22, 184–189 (2020). (PMID: 3206187810.1016/j.jgar.2020.01.017)
      Marathe, N. P. et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ. Int. 112, 279–286 (2018). (PMID: 2931651710.1016/j.envint.2017.12.036)
      Franceschini, N. et al. Purification and biochemical characterization of the VIM-1 metallo-beta-lactamase. Antimicrob. Agents Chemother 44, 3003–3007 (2000). (PMID: 1103601310159310.1128/AAC.44.11.3003-3007.2000)
      Marcoccia, F. et al. Kinetic study of laboratory mutants of NDM-1 metallo-beta-lactamase and the importance of an isoleucine at position 35. Antimicrob. Agents Chemother 60, 2366–2372 (2016). (PMID: 26856833480822610.1128/AAC.00531-15)
      Laraki, N. et al. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother 43, 902–906 (1999). (PMID: 101031978922310.1128/AAC.43.4.902)
      Yigit, H. et al. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob. Agents Chemother 47, 3881–3889 (2003). (PMID: 1463849829620210.1128/AAC.47.12.3881-3889.2003)
      Mariotte-Boyer, S., Nicolas-Chanoine, M. H. & Labia, R. A kinetic study of NMC-A beta-lactamase, an Ambler class A carbapenemase also hydrolyzing cephamycins. FEMS Microbiol. Lett 143, 29–33 (1996). (PMID: 8807798)
      Docquier, J. D. et al. Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. Chem. Biol. 16, 540–547 (2009). (PMID: 1947741810.1016/j.chembiol.2009.04.010)
    • Accession Number:
      0 (Bacterial Proteins)
      EC 3.5.2.6 (beta-Lactamases)
      EC 3.5.2.6 (carbapenemase)
    • Publication Date:
      Date Created: 20210609 Date Completed: 20211020 Latest Revision: 20230203
    • Publication Date:
      20231215
    • Accession Number:
      PMC8187427
    • Accession Number:
      10.1038/s41598-021-91202-6
    • Accession Number:
      34103596