Integration of constraint-based modeling with fecal metabolomics reveals large deleterious effects of Fusobacterium spp. on community butyrate production.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Taylor & Francis Country of Publication: United States NLM ID: 101495343 Publication Model: Print Cited Medium: Internet ISSN: 1949-0984 (Electronic) Linking ISSN: 19490976 NLM ISO Abbreviation: Gut Microbes Subsets: MEDLINE
    • Publication Information:
      Publication: 2015- : Philadelphia, PA : Taylor & Francis
      Original Publication: Austin, Tex. : Landes Bioscience
    • Subject Terms:
    • Abstract:
      Characterizing the metabolic functions of the gut microbiome in health and disease is pivotal for translating alterations in microbial composition into clinical insights. Two major analysis paradigms have been used to explore the metabolic functions of the microbiome but not systematically integrated with each other: statistical screening approaches, such as metabolome-microbiome association studies, and computational approaches, such as constraint-based metabolic modeling. To combine the strengths of the two analysis paradigms, we herein introduce a set of theoretical concepts allowing for the population statistical treatment of constraint-based microbial community models. To demonstrate the utility of the theoretical framework, we applied it to a public metagenomic dataset consisting of 365 colorectal cancer (CRC) cases and 251 healthy controls, shining a light on the metabolic role of Fusobacterium spp. in CRC. We found that (1) glutarate production capability was significantly enriched in CRC microbiomes and mechanistically linked to lysine fermentation in Fusobacterium spp., (2) acetate and butyrate production potentials were lowered in CRC, and (3) Fusobacterium spp. presence had large negative ecological effects on community butyrate production in CRC cases and healthy controls. Validating the model predictions against fecal metabolomics, the in silico frameworks correctly predicted in vivo species metabolite correlations with high accuracy. In conclusion, highlighting the value of combining statistical association studies with in silico modeling, this study provides insights into the metabolic role of Fusobacterium spp. in the gut, while providing a proof of concept for the validity of constraint-based microbial community modeling.
    • References:
      Gut Microbes. 2013 Jan-Feb;4(1):28-40. (PMID: 23022739)
      Nat Med. 2019 Apr;25(4):679-689. (PMID: 30936547)
      Clin Chem. 2018 Sep;64(9):1327-1337. (PMID: 29914865)
      J Food Drug Anal. 2019 Jul;27(3):615-622. (PMID: 31324278)
      Nat Rev Microbiol. 2019 Dec;17(12):764-775. (PMID: 31417197)
      Trends Microbiol. 2014 May;22(5):261-6. (PMID: 24618403)
      Anaerobe. 1997 Oct;3(5):327-37. (PMID: 16887608)
      Nucleic Acids Res. 2019 Jan 8;47(D1):D614-D624. (PMID: 30371894)
      Nat Methods. 2015 Oct;12(10):902-3. (PMID: 26418763)
      Nat Rev Microbiol. 2014 Oct;12(10):661-72. (PMID: 25198138)
      BMC Cancer. 2018 Sep 20;18(1):906. (PMID: 30236083)
      PLoS One. 2014 Mar 06;9(6):e90849. (PMID: 24603888)
      Curr Opin Syst Biol. 2017 Aug;4:43-52. (PMID: 32984662)
      Behav Res Methods. 2008 Aug;40(3):879-91. (PMID: 18697684)
      World J Gastroenterol. 2015 May 7;21(17):5167-75. (PMID: 25954090)
      Nat Biotechnol. 2017 Jan;35(1):81-89. (PMID: 27893703)
      Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2247-52. (PMID: 24390544)
      mBio. 2020 Feb 18;11(1):. (PMID: 32071266)
      Cell. 2012 Mar 16;148(6):1258-70. (PMID: 22424233)
      Cell Rep. 2019 Nov 12;29(7):1767-1777.e8. (PMID: 31722195)
      Gut. 2016 Dec;65(12):1973-1980. (PMID: 26311717)
      Cancer Cell. 2018 Jun 11;33(6):954-964. (PMID: 29657127)
      mBio. 2014 Apr 22;5(2):e00889. (PMID: 24757212)
      JAMA Oncol. 2015 Aug;1(5):653-61. (PMID: 26181352)
      J Gastrointest Oncol. 2019 Dec;10(6):1164-1170. (PMID: 31949936)
      JAMA Oncol. 2017 Jul 1;3(7):921-927. (PMID: 28125762)
      Int J Food Microbiol. 2014 Nov 17;191:172-81. (PMID: 25282609)
      Cancers (Basel). 2020 Feb 06;12(2):. (PMID: 32041122)
      mSystems. 2019 Dec 17;4(6):. (PMID: 31848305)
      Front Immunol. 2018 Jun 22;9:1434. (PMID: 29988393)
      Nat Protoc. 2019 Mar;14(3):639-702. (PMID: 30787451)
      Mol Syst Biol. 2020 May;16(5):e8982. (PMID: 32463598)
      Appl Microbiol Biotechnol. 2001 Oct;57(3):263-73. (PMID: 11759672)
      mSystems. 2019 Apr 23;4(2):. (PMID: 31020043)
      Bioinformatics. 2019 Jul 1;35(13):2332-2334. (PMID: 30462168)
      Nat Genet. 2018 Jun;50(6):790-795. (PMID: 29808030)
      J Nutr. 2003 Jul;133(7 Suppl):2485S-2493S. (PMID: 12840228)
      Transl Res. 2017 Nov;189:51-64. (PMID: 28764956)
      ISME J. 2019 Nov;13(11):2647-2655. (PMID: 31253856)
      PLoS One. 2016 Feb 19;11(2):e0148386. (PMID: 26894828)
      Microbiome. 2019 May 15;7(1):75. (PMID: 31092280)
      Cancer Metab. 2020 Feb 10;8:3. (PMID: 32055399)
      mSphere. 2016 May 11;1(3):. (PMID: 27303740)
      Front Oncol. 2018 Oct 15;8:371. (PMID: 30374420)
      Nat Rev Gastroenterol Hepatol. 2012 Sep 04;9(10):577-89. (PMID: 22945443)
      Curr Opin Biotechnol. 2013 Feb;24(1):4-12. (PMID: 23102866)
      Cell Host Microbe. 2013 Aug 14;14(2):207-15. (PMID: 23954159)
      Cell. 2017 Jul 27;170(3):548-563.e16. (PMID: 28753429)
      Eur J Clin Nutr. 2001 Sep;55(9):735-42. (PMID: 11528486)
      Nat Rev Drug Discov. 2002 Apr;1(4):287-99. (PMID: 12120280)
      Cell Metab. 2019 Oct 1;30(4):675-688.e7. (PMID: 31543403)
      Nat Med. 2019 Jun;25(6):968-976. (PMID: 31171880)
      Nat Biotechnol. 2010 Mar;28(3):245-8. (PMID: 20212490)
      Cell. 2016 Jun 2;165(6):1332-1345. (PMID: 27259147)
      Metab Eng. 2018 Sep;49:128-142. (PMID: 30075203)
      BMC Biol. 2020 Jun 9;18(1):62. (PMID: 32517799)
      Transl Res. 2017 Jan;179:204-222. (PMID: 27591027)
      Eur J Clin Microbiol Infect Dis. 2014 Aug;33(8):1381-90. (PMID: 24599709)
      Microb Ecol. 2013 Aug;66(2):462-70. (PMID: 23733170)
      Nat Med. 2013 May;19(5):576-85. (PMID: 23563705)
      Nat Microbiol. 2019 Aug;4(8):1253-1267. (PMID: 31337891)
      N Engl J Med. 2016 Dec 15;375(24):2369-2379. (PMID: 27974040)
    • Grant Information:
      RF1 AG058942 United States AG NIA NIH HHS; U19 AG063744 United States AG NIA NIH HHS
    • Contributed Indexing:
      Keywords: Metabolic modeling; flux balance analysis; fusiobacteria; metagenomic data; microbiome
    • Accession Number:
      0 (Butyrates)
    • Publication Date:
      Date Created: 20210531 Date Completed: 20211118 Latest Revision: 20211118
    • Publication Date:
      20240829
    • Accession Number:
      PMC8168482
    • Accession Number:
      10.1080/19490976.2021.1915673
    • Accession Number:
      34057024