Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc Country of Publication: China NLM ID: 101769147 Publication Model: eCollection Cited Medium: Internet ISSN: 2590-3462 (Electronic) Linking ISSN: 25903462 NLM ISO Abbreviation: Plant Commun
- Publication Information:
Original Publication: [Shanghai] : Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc., [2020]-
- Subject Terms:
- Abstract:
When plants are exposed to hypoxic conditions, the level of γ-aminobutyric acid (GABA) in plant tissues increases by several orders of magnitude. The physiological rationale behind this elevation remains largely unanswered. By combining genetic and electrophysiological approach, in this work we show that hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to cytosolic K + homeostasis and Ca 2+ signaling. We show that reduced O 2 availability affects H + -ATPase pumping activity, leading to membrane depolarization and K + loss via outward-rectifying GORK channels. Hypoxia stress also results in H 2 O 2 accumulation in the cell that activates ROS-inducible Ca 2+ uptake channels and triggers self-amplifying "ROS-Ca hub," further exacerbating K + loss via non-selective cation channels that results in the loss of the cell's viability. Hypoxia-induced elevation in the GABA level may restore membrane potential by pH-dependent regulation of H + -ATPase and/or by generating more energy through the activation of the GABA shunt pathway and TCA cycle. Elevated GABA can also provide better control of the ROS-Ca 2+ hub by transcriptional control of RBOH genes thus preventing over-excessive H 2 O 2 accumulation. Finally, GABA can operate as a ligand directly controlling the open probability and conductance of K + efflux GORK channels, thus enabling plants adaptation to hypoxic conditions.
(© 2021 The Author(s).)
- References:
Trends Plant Sci. 2004 Sep;9(9):449-56. (PMID: 15337495)
J Exp Bot. 2018 Jan 23;69(3):667-680. (PMID: 29301054)
Front Plant Sci. 2015 Dec 22;6:1128. (PMID: 26734035)
J Exp Bot. 2017 Jun 1;68(12):3191-3204. (PMID: 28338729)
Trends Plant Sci. 2008 Jan;13(1):14-9. (PMID: 18155636)
Front Plant Sci. 2020 Mar 06;11:247. (PMID: 32211003)
Plant Cell Environ. 2014 Oct;37(10):2216-33. (PMID: 24689809)
Trends Plant Sci. 2012 Jan;17(1):9-15. (PMID: 22037416)
Int J Mol Sci. 2018 Aug 25;19(9):. (PMID: 30149642)
New Phytol. 2011 Apr;190(2):289-98. (PMID: 21563365)
New Phytol. 2020 Feb;225(3):1091-1096. (PMID: 31006123)
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15681-6. (PMID: 20724658)
Int J Mol Sci. 2018 Mar 01;19(3):. (PMID: 29494514)
J Plant Physiol. 2014 May 15;171(9):670-87. (PMID: 24635902)
Plant Cell Physiol. 2011 Jun;52(6):1107-16. (PMID: 21551160)
Ann Bot. 2005 Sep;96(4):519-32. (PMID: 16024558)
Plant Physiol. 1967 Aug;42(8):1042-52. (PMID: 16656612)
Plant Cell Environ. 2020 Dec;43(12):2957-2968. (PMID: 33043459)
New Phytol. 2018 Oct;220(1):49-69. (PMID: 29916203)
Cell. 2003 Jul 11;114(1):47-59. (PMID: 12859897)
Arch Biochem Biophys. 2007 Sep 1;465(1):180-6. (PMID: 17662229)
J Exp Bot. 2009;60(3):709-12. (PMID: 19269993)
Plant Cell Environ. 2014 Oct;37(10):2325-38. (PMID: 25132404)
New Phytol. 2015 Apr;206(1):57-73. (PMID: 25580769)
Front Plant Sci. 2015 Jun 09;6:419. (PMID: 26106401)
Plant Cell Physiol. 2008 Jan;49(1):92-102. (PMID: 18077464)
Plant Cell Environ. 2017 Apr;40(4):473-482. (PMID: 26799776)
Front Plant Sci. 2013 Aug 14;4:313. (PMID: 23967003)
J Exp Bot. 2016 Feb;67(4):1015-31. (PMID: 26507891)
Plant Physiol. 2007 Dec;145(4):1714-25. (PMID: 17965172)
Int J Mol Sci. 2019 Feb 06;20(3):. (PMID: 30736310)
J Exp Bot. 2013 Jan;64(2):471-81. (PMID: 23307916)
Nat Commun. 2018 May 10;9(1):1847. (PMID: 29748663)
Physiol Plant. 2014 Jul;151(3):257-79. (PMID: 24506225)
PLoS One. 2015 Mar 16;10(3):e0115349. (PMID: 25775459)
New Phytol. 2020 Feb;225(3):1097-1104. (PMID: 30993727)
Food Chem. 2013 Jan 1;136(1):152-9. (PMID: 23017406)
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):119-24. (PMID: 22198838)
Plant Sci. 2016 Apr;245:25-34. (PMID: 26940489)
J Exp Bot. 2006;57(12):3079-89. (PMID: 16899523)
Trends Plant Sci. 2012 Feb;17(2):57-9. (PMID: 22226724)
Mol Plant. 2016 Mar 7;9(3):323-337. (PMID: 26584714)
Funct Plant Biol. 2013 Aug;40(9):872-882. (PMID: 32481157)
Trends Plant Sci. 2020 May;25(5):434-445. (PMID: 31964604)
J Cell Sci. 2010 May 1;123(Pt 9):1468-79. (PMID: 20375061)
Plant Cell Rep. 2019 Aug;38(8):847-867. (PMID: 30739138)
Plant Signal Behav. 2019;14(3):e1573096. (PMID: 30676228)
EMBO J. 1996 Jun 17;15(12):2988-96. (PMID: 8670800)
Int Rev Neurobiol. 1960;2:279-332. (PMID: 13742140)
Plant Physiol. 2006 Dec;142(4):1350-2. (PMID: 17151138)
J Biol Chem. 2010 Sep 17;285(38):29286-94. (PMID: 20605786)
FEMS Microbiol Rev. 2006 May;30(3):472-86. (PMID: 16594966)
Plant Cell Environ. 2014 Oct;37(10):2366-80. (PMID: 24450922)
Plant Cell Environ. 2013 May;36(5):956-69. (PMID: 23094798)
Trends Plant Sci. 2016 Apr;21(4):295-301. (PMID: 26723562)
Funct Plant Biol. 2018 Jan;45(2):9-27. (PMID: 32291018)
Plant Cell Physiol. 2016 Jan;57(1):160-73. (PMID: 26581863)
J Plant Physiol. 2015 Mar 1;175:174-82. (PMID: 25543863)
J Exp Bot. 2011 Jan;62(1):39-57. (PMID: 20847100)
Front Plant Sci. 2018 Feb 02;9:100. (PMID: 29456548)
FEBS J. 2011 Nov;278(22):4293-303. (PMID: 21955642)
Front Plant Sci. 2017 Mar 22;8:388. (PMID: 28382046)
Plant Cell Environ. 2014 Mar;37(3):589-600. (PMID: 23937055)
Trends Plant Sci. 2004 Mar;9(3):110-5. (PMID: 15003233)
Plant Physiol. 2009 Jan;149(1):461-73. (PMID: 19005089)
J Exp Bot. 2019 Nov 18;70(21):6349-6361. (PMID: 31420662)
J Exp Bot. 2016 Jun;67(12):3747-62. (PMID: 26889007)
Plant Cell Environ. 2006 Jun;29(6):1107-21. (PMID: 17080937)
Nat Commun. 2015 Jul 29;6:7879. (PMID: 26219411)
Physiol Mol Biol Plants. 2010 Jul;16(3):259-72. (PMID: 23572976)
Brain Res Mol Brain Res. 2001 Jan 31;86(1-2):84-9. (PMID: 11165375)
Yeast. 2019 Apr;36(4):201-210. (PMID: 30447028)
Plant Physiol Biochem. 2018 Sep;130:157-172. (PMID: 29990769)
Planta. 2007 Dec;227(1):189-97. (PMID: 17712568)
J Plant Physiol. 2014 May 15;171(9):656-69. (PMID: 24140002)
Cell Mol Life Sci. 2017 May;74(9):1577-1603. (PMID: 27838745)
Plant Physiol. 1994 Mar;104(3):865-871. (PMID: 12232132)
Plant J. 2020 Jun;102(5):887-896. (PMID: 31943489)
FEBS Lett. 2005 Jan 17;579(2):415-20. (PMID: 15642352)
Plant Cell. 2017 Apr;29(4):775-790. (PMID: 28351990)
J Plant Physiol. 2019 Aug;239:92-108. (PMID: 31255944)
Funct Plant Biol. 2018 Aug;45(9):877-894. (PMID: 32291053)
Plant Physiol. 1997 Jan;113(1):111-118. (PMID: 12223594)
- Contributed Indexing:
Keywords: GORK; H+-ATPase; NADPH oxidase; calcium signaling; potassium homeostasis; reactive oxygen species
- Accession Number:
0 (Ions)
0 (Reactive Oxygen Species)
56-12-2 (gamma-Aminobutyric Acid)
S88TT14065 (Oxygen)
- Publication Date:
Date Created: 20210524 Date Completed: 20220107 Latest Revision: 20220107
- Publication Date:
20221213
- Accession Number:
PMC8132176
- Accession Number:
10.1016/j.xplc.2021.100188
- Accession Number:
34027398
No Comments.