Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Fitting Probability Distributions to Animal Movement Trajectories: Using Artificial Neural Networks to Link Distance, Resources, and Memory.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Animal movement paths are often thought of as a confluence of behavioral processes and landscape patterns. Yet it has proven difficult to develop frameworks for analyzing animal movement that can test these interactions. Here we describe a novel method for fitting movement models to data that can incorporate diverse aspects of landscapes and behavior. Using data from five elk (Cervus canadensis) reintroduced to central Ontario, we employed artificial neural networks to estimate movement probability kernels as functions of three landscape-behavioral processes. These consisted of measures of the animals' response to the physical spatial structure of the landscape, the spatial variability in resources, and memory of previously visited locations. The results support the view that animal movement results from interactions among elements of landscape structure and behavior, motivating context-dependent movement probabilities, rather than from successive realizations of static distributions, as some traditional models of movement and resource selection assume. Flexible, nonlinear models may thus prove useful in understanding the mechanisms controlling animal movement patterns. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of American Naturalist is the property of University of Chicago and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.