Differential inflammatory responses associated with Leishmania major and L tropica in culture.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 7910948 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-3024 (Electronic) Linking ISSN: 01419838 NLM ISO Abbreviation: Parasite Immunol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, Wiley
    • Subject Terms:
    • Abstract:
      Background: Anthroponotic cutaneous leishmaniasis (ACL) due to Leishmania tropica and zoonotic CL (ZCL) due to L major have different clinical and epidemiological features.
      Objectives: To determine whether pro-inflammatory cytokines are involved in diverse pathogenicity of Leishmania species causing CL.
      Patients/methods: The capacity of L major/L tropica to modulate expression of IL-1β, IL-8 (CXCL8), IFN-γ, TNF-α and MCP-1 (CCL2) in peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) was evaluated by real-time RT-PCR technique.
      Results: PBMCs from both ZCL and ACL cases expressed significantly higher IFN-γ (P < .001) and TNF-α (P < .05) compared with healthy controls (HC). PBMCs from ACL patients expressed significantly higher IL-1β and IL-8 compared with ZCL patients and HC when stimulated with live L major or L tropica promastigotes (P < .001). After 4 and 10 hours, L major-infected MDMs expressed significantly higher IFN-γ (P < .05), and after 10 hours, L tropica-infected MDMs expressed significantly higher IL-1β, IFN-γ and IL-8 compared with noninfected cells (P < .05).
      Conclusions: This study shows differential parasite-mediated stimulations of the inflammatory response with L major vs L tropica ex vivo. Pro-inflammatory cytokines particularly IL-8 (CXCL8) and IL-1β might contribute in diverse clinical features of CL such as longer duration of lesion persistence in ACL patients.
      (© 2021 John Wiley & Sons Ltd.)
    • References:
      WHO. Leishmaniasis. 2021; https://www.who.int/health-topics/leishmaniasis#tab=tab_1 Accessed February 5, 2021.
      Horta MF, Mendes BP, Roma EH, et al. Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. J Parasitol Res. 2012;2012:203818.
      Firooz A, Mortazavi H, Khamesipour A, et al. Old world cutaneous leishmaniasis in Iran: clinical variants and treatments. J Dermatol Treat. 2020:1-11. [Epub ahead of print].
      Maksouri H, Dang PM, Rodrigues V, Estaquier J, Riyad M, Akarid K. Moroccan strains of Leishmania major and Leishmania tropica differentially impact on nitric oxide production by macrophages. Parasit Vectors. 2017;10(1):506.
      Akilov OE, Khachemoune A, Hasan T. Clinical manifestations and classification of Old World cutaneous leishmaniasis. Int J Dermatol. 2007;46(2):132-142.
      Meireles CB, Maia LC, Soares GC, et al. Atypical presentations of cutaneous leishmaniasis: a systematic review. Acta Trop. 2017;172:240-254.
      Khosravi A, Sharifi I, Fekri A, et al. Clinical features of anthroponotic cutaneous leishmaniasis in a major focus, southeastern Iran, 1994-2014. Iran J Parasitol. 2017;12(4):544-553.
      Keshavarz Valian H, Nateghi Rostami M, Tasbihi M, et al. CCR7+ central and CCR7- effector memory CD4+ T cells in human cutaneous leishmaniasis. J Clin Immunol. 2013;33(1):220-234.
      Khamesipour A, Nateghi Rostami M, Tasbihi M, et al. Phenotyping of circulating CD8⁺ T cell subsets in human cutaneous leishmaniasis. Microbes Infect. 2012;14(9):702-711.
      Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health. 2016;110(6):247-260.
      Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2(11):845-858.
      Nateghi Rostami M, Khachemoune A. Biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol. 2021. [Epub ahead of print].
      Osero BO, Aruleba RT, Brombacher F, Hurdayal R. Unravelling the unsolved paradoxes of cytokine families in host resistance and susceptibility to Leishmania infection. Cytokine: X. 2020;2(4):100043.
      Dubie T, Mohammed Y. Review on the role of host immune response in protection and immunopathogenesis during cutaneous leishmaniasis infection. J Immunol Res. 2020;2020:2496713.
      Nateghi Rostami M, Darzi F, Farahmand M, Aghaei M, Parvizi P. Performance of a universal PCR assay to identify different Leishmania species causative of Old World cutaneous leishmaniasis. Parasit Vectors. 2020;13(1):431.
      Scott P, Pearce E, Natovitz P, Sher A. Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J Iimmunol (Baltimore, Md: 1950). 1987;139(1):221-227.
      Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254.
      Miramin-Mohammadi A, Javadi A, Eskandari SE, Mortazavi H, Rostami MN, Khamesipour A. Immune response in cutaneous leishmaniasis patients with healing vs. non-healing lesions. Iran J Microbiol. 2020;12(3):249-255.
      Nateghi Rostami M, Keshavarz H, Edalat R, et al. CD8+ T cells as a source of IFN-γ production in human cutaneous leishmaniasis. PLoS Negl Trop Dis. 2010;4(10):e845.
      Habibi GR, Khamesipour A, McMaster WR, Mahboudi F. Cytokine gene expression in healing and non-healing cases of cutaneous leishmaniasis in response to in vitro stimulation with recombinant gp63 using semi-quantitative RT-PCR. Scand J Immunol. 2001;54(4):414-420.
      Nateghi Rostami M, Keshavarz Valian H, Eskandari SE, et al. Differential in vitro CD4+/CD8+ T-cell response to live vs. killed Leishmania major. Parasite Immunol. 2010;32(2):101-110.
      Gaafar A, Veress B, Permin H, Kharazmi A, Theander TG, el Hassan AM. Characterization of the local and systemic immune responses in patients with cutaneous leishmaniasis due to Leishmania major. Clin Immunol (Orlando, Fla). 1999;91(3):314-320.
      Ajdary S, Riazi-Rad F, Alimohammadian MH, Pakzad SR. Immune response to Leishmania antigen in anthroponotic cutaneous leishmaniasis. J Infect. 2009;59(2):139-143.
      Kemp K, Theander TG, Hviid L, Garfar A, Kharazmi A, Kemp M. Interferon-gamma- and tumour necrosis factor-alpha-producing cells in humans who are immune to cutaneous leishmaniasis. Scand J Immunol. 1999;49(6):655-659.
      Bogdan C, Moll H, Solbach W, Röllinghoff M. Tumor necrosis factor-alpha in combination with interferon-gamma, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur J Immunol. 1990;20(5):1131-1135.
      Nateghi Rostami M, Seyyedan Jasbi E, Khamesipour A, Miramin MA. Plasma levels of tumor necrosis factor-alpha (TNF-α), TNF-α soluble receptor type 1 (sTNFR I) and IL-22 in human leishmaniasis. Trop Biomed. 2015;32(3):478-484.
      Nateghi Rostami M, Seyyedan Jasbi E, Khamesipour A, Mohammadi AM. Tumour Necrosis Factor-alpha (TNF-α) and its soluble receptor type 1 (sTNFR I) in human active and healed leishmaniases. Parasit Immunol. 2016;38(4):255-260.
      Cáceres-Dittmar G, Tapia FJ, Sánchez MA, et al. Determination of the cytokine profile in American cutaneous leishmaniasis using the polymerase chain reaction. Clin Exp Immunol. 1993;91(3):500-505.
      Melby PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VV, Palomo-Cetina A. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun. 1994;62(3):837-842.
      Antonelli LR, Dutra WO, Almeida RP, Bacellar O, Carvalho EM, Gollob KJ. Activated inflammatory T cells correlate with lesion size in human cutaneous leishmaniasis. Immunol lett. 2005;101(2):226-230.
      Hammond ME, Lapointe GR, Feucht PH, et al. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J immunol (Baltimore, Md: 1950). 1995;155(3):1428-1433.
      Alexander J, Satoskar AR, Russell DG. Leishmania species: models of intracellular parasitism. J Cell Sci. 1999;112(Pt 18):2993-3002.
      Badolato R, Sacks DL, Savoia D, Musso T Leishmania major: infection of human monocytes induces expression of IL-8 and MCAF. Exp Parasitol. 1996;82(1):21-26.
      Oualha R, Barhoumi M, Marzouki S, Harigua-Souiai E, Ben Ahmed M, Guizani I. Infection of human neutrophils with Leishmania infantum or Leishmania major strains triggers activation and differential cytokines release. Front Cell Infect Microbiol. 2019;9:153.
      Taslimi Y, Agbajogu C, Brynjolfsson SF, et al. Profiling inflammatory response in lesions of cutaneous leishmaniasis patients using a non-invasive sampling method combined with a high-throughput protein detection assay. Cytokine. 2020;130:155056.
      Boussoffara T, Boubaker MS, Ben Ahmed M, et al. Histological and immunological differences between zoonotic cutaneous leishmaniasis due to Leishmania major and sporadic cutaneous leishmaniasis due to Leishmania infantum. Parasite (Paris, France). 2019;26:9.
      Kumar R, Bumb RA, Salotra P. Evaluation of localized and systemic immune responses in cutaneous leishmaniasis caused by Leishmania tropica: interleukin-8, monocyte chemotactic protein-1 and nitric oxide are major regulatory factors. Immunology. 2010;130(2):193-201.
      van Zandbergen G, Klinger M, Mueller A, et al. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol (Baltimore, Md: 1950). 2004;173(11):6521-6525.
      Ritter U, Körner H. Divergent expression of inflammatory dermal chemokines in cutaneous leishmaniasis. Parasite Immunol. 2002;24(6):295-301.
      Navas A, Vargas DA, Freudzon M, McMahon-Pratt D, Saravia NG, Gómez MA. Chronicity of dermal leishmaniasis caused by Leishmania panamensis is associated with parasite-mediated induction of chemokine gene expression. Infect Immun. 2014;82(7):2872-2880.
      Valencia-Pacheco G, Loría-Cervera EN, Sosa-Bibiano EI, et al. In situ cytokines (IL-4, IL-10, IL-12, IFN-γ) and chemokines (MCP-1, MIP-1α) gene expression in human Leishmania (Leishmania) mexicana infection. Cytokine. 2014;69(1):56-61.
      Reiner NE. Parasite accessory cell interactions in murine leishmaniasis. I. Evasion and stimulus-dependent suppression of the macrophage interleukin 1 response by Leishmania donovani. J Immunol (Baltimore, Md: 1950). 1987;138(6):1919-1925.
      Moore KJ, Matlashewski G. Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol (Baltimore, Md: 1950). 1994;152(6):2930-2937.
      Chanyalew M, Abebe M, Endale B, et al. Enhanced production of pro-inflammatory cytokines and chemokines in Ethiopian cutaneous leishmaniasis upon exposure to Leishmania aethiopica. Cytokine. 2020:155289. [Epub ahead of print].
    • Contributed Indexing:
      Keywords: Leishmania major; Leishmania tropica; cutaneous leishmaniasis; interleukin-1β; interleukin-8; pro-inflammatory cytokines
    • Accession Number:
      0 (Cytokines)
    • Publication Date:
      Date Created: 20210429 Date Completed: 20211125 Latest Revision: 20211125
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/pim.12841
    • Accession Number:
      33914948