Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Nodularia spumigena is a bloom-forming diazotrophic cyanobacterium inhabiting brackish waters worldwide. This species produces non-ribosomal peptides (NRPs), including the hepatotoxin nodularin, often referred to as cyanotoxin. Several known classes of NRPs have various biological activities, although their modes of action are poorly understood. In the Baltic N. spumigena, there is a high NRP chemodiversity among strains, allowing their grouping in specific chemotypes and subgroups. Therefore, it is relevant to ask whether the NRP production is affected by intraspecific interactions between the co-existing strains. Using a novel approach that combines culture technique and liquid chromatography-tandem mass spectrometry for the NRP analysis, we examined N. spumigena strains under mono- and co-culture conditions. The test strains were selected to represent N. spumigena belonging to the same or different chemotype subgroups. In this setup, we observed physiological and metabolic responses in the test strains grown without cell contact. The changes in NRP levels to co-culture conditions were conserved within a chemotype subgroup but different between the subgroups. Our results suggest that intraspecific interactions may promote a chemical diversity in N. spumigena population, with higher NRP production compared to a single-strain population. Studying allelochemical signalling in this cyanobacterium is crucial for understanding toxicity mechanisms and plankton community interactions in the Baltic Sea and other aquatic systems experiencing regular blooms.
    • References:
      Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—Responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003). (PMID: 10.1016/j.csr.2003.06.001)
      McGregor, G. B. et al. First report of a toxic Nodularia spumigena (nostocales/cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. Int. J. Env. Res. Public Health 9, 2396–2411 (2012). (PMID: 10.3390/ijerph9072396)
      Popin, R. V. et al. Genomic and metabolomic analyses of natural products in Nodularia spumigena isolated from a shrimp culture pond. Toxins 12, 141 (2020). (PMID: 715077910.3390/toxins12030141)
      Seaman, M., Ashton, P. & Williams, W. Inland salt waters of southern Africa. Hydrobiologia 210, 75–91 (1991). (PMID: 10.1007/BF00014324)
      Beutel, M. W., Horne, A. J., Roth, J. C. & Barratt, N. J. Saline Lakes 91–105 (Springer, 2001). (PMID: 10.1007/978-94-017-2934-5_9)
      Paerl, H. W. & Paul, V. J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012). (PMID: 2189333010.1016/j.watres.2011.08.002)
      Karjalainen, M. et al. Ecosystem consequences of cyanobacteria in the northern Baltic Sea. AMBIO J. Human Environ. 36, 195–202 (2007). (PMID: 10.1579/0044-7447(2007)36[195:ECOCIT]2.0.CO;2)
      Sotton, B., Domaizon, I., Anneville, O., Cattanéo, F. & Guillard, J. Nodularin and cylindrospermopsin: A review of their effects on fish. Rev. Fish Biol. Fish. 25, 1–19 (2015). (PMID: 10.1007/s11160-014-9366-6)
      Mazur-Marzec, H., Bertos-Fortis, M., Toruńska-Sitarz, A., Fidor, A. & Legrand, C. Chemical and genetic diversity of Nodularia spumigena from the Baltic Sea. Mar. Drugs 14, 209. https://doi.org/10.3390/md14110209 (2016). (PMID: 10.3390/md141102095128752)
      Voss, B. et al. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8, e60224–e60224. https://doi.org/10.1371/journal.pone.0060224 (2013). (PMID: 10.1371/journal.pone.0060224235559323610870)
      Le Manach, S. et al. Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00791 (2019). (PMID: 10.3389/fmicb.2019.00791310575096477967)
      Welker, M. & von Döhren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 30, 530–563 (2006). (PMID: 1677458610.1111/j.1574-6976.2006.00022.x)
      Kehr, J. C., Picchi, D. G. & Dittmann, E. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes. Beilstein J. Org. Chem. 7, 1622–1635. https://doi.org/10.3762/bjoc.7.191 (2011). (PMID: 10.3762/bjoc.7.191222385403252866)
      Christiansen, G., Philmus, B., Hemscheidt, T. & Kurmayer, R. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J. Bacteriol. 193, 3822–3831 (2011). (PMID: 21622740314751710.1128/JB.00360-11)
      Ishida, K. et al. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. Chem. Biol. 14, 565–576 (2007). (PMID: 17524987402061610.1016/j.chembiol.2007.04.006)
      Fewer, D.P. et al. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 73, 924–937. https://doi.org/10.1111/j.1365-2958.2009.06816.x (2009). (PMID: 10.1111/j.1365-2958.2009.06816.x19691450)
      Portmann, C. et al. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod. 71, 1891–1896 (2008). (PMID: 1897338610.1021/np800409z)
      Ersmark, K., Del Valle, J. R. & Hanessian, S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew. Chem. Int. Ed. 47, 1202–1223 (2008). (PMID: 10.1002/anie.200605219)
      Liu, L. et al. Pseudoaeruginosins, nonribosomal peptides in Nodularia spumigena. ACS Chem. Biol. 10, 725–733 (2015). (PMID: 2541963310.1021/cb5004306)
      Itou, Y., Suzuki, S., Ishida, K. & Murakami, M. Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). Bioorg. Med. Chem. Lett. 9, 1243–1246 (1999). (PMID: 1034060710.1016/S0960-894X(99)00191-2)
      Bister, B. et al. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J. Nat. Prod. 67, 1755–1757 (2004). (PMID: 1549795710.1021/np049828f)
      Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C. & Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15, 1239–1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x (2013). (PMID: 10.1111/j.1462-2920.2012.02729.x22429476)
      Halstvedt, C. B., Rohrlack, T., Ptacnik, R. & Edvardsen, B. On the effect of abiotic environmental factors on production of bioactive oligopeptides in field populations of Planktothrix spp. (Cyanobacteria). J. Plankton Res. 30, 607–617 (2008). (PMID: 10.1093/plankt/fbn025)
      Mazur-Marzec, H. et al. Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar. Drugs 11, 1–19. https://doi.org/10.3390/md11010001 (2012). (PMID: 10.3390/md11010001233441543564153)
      Repka, S., Koivula, M., Harjunpa, V., Rouhiainen, L. & Sivonen, K. Effects of phosphate and light on growth of and bioactive peptide production by the Cyanobacterium anabaena strain 90 and its anabaenopeptilide mutant. Appl. Environ. Microbiol. 70, 4551–4560. https://doi.org/10.1128/aem.70.8.4551-4560.2004 (2004). (PMID: 10.1128/aem.70.8.4551-4560.200415294785492370)
      Lehtimäki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63, 1647–1656 (1997). (PMID: 16535588138914310.1128/aem.63.5.1647-1656.1997)
      OECD. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD Guidelines for the Testing of Chemicals, Section 2. https://doi.org/10.1787/9789264069923-en (OECD Publishing, Paris, 2011).
      Vaas, L. A. I., Sikorski, J., Michael, V., Göker, M. & Klenk, H.-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE 7, e34846. https://doi.org/10.1371/journal.pone.0034846 (2012). (PMID: 10.1371/journal.pone.0034846225363353334903)
      Higo, S., Yamatogi, T., Ishida, N., Hirae, S. & Koike, K. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae 61, 63–70 (2017). (PMID: 10.1016/j.hal.2016.11.013)
      Qi, H., Wang, J. & Wang, Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J. Sea Res. 80, 1–11 (2013). (PMID: 10.1016/j.seares.2013.02.007)
      Briand, E., Bormans, M., Gugger, M., Dorrestein, P. C. & Gerwick, W. H. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ. Microbiol. 18, 384–400. https://doi.org/10.1111/1462-2920.12904 (2016). (PMID: 10.1111/1462-2920.1290425980449)
      Koek, M. M., Muilwijk, B., van der Werf, M. J. & Hankemeier, T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal. Chem. 78, 1272–1281 (2006). (PMID: 1647812210.1021/ac051683+)
      R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).
      Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245-257.e247. https://doi.org/10.1016/j.cels.2018.08.003 (2018). (PMID: 10.1016/j.cels.2018.08.003301954376166237)
      Paul, C., Mausz, M. A. & Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9, 349–359. https://doi.org/10.1007/s11306-012-0453-1 (2013). (PMID: 10.1007/s11306-012-0453-1)
      Schatz, D. et al. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ. Microbiol. 7, 798–805 (2005). (PMID: 1589269910.1111/j.1462-2920.2005.00752.x)
      Jensen, A., Rystad, B. & Skoglund, L. The use of dialysis culture in phytoplankton studies. J. Exp. Mar. Biol. Ecol. 8, 241–248 (1972). (PMID: 10.1016/0022-0981(72)90063-9)
      Kobayashi, K., Takata, Y. & Kodama, M. Direct contact between Pseudo-nitzschiaámultiseries and bacteria is necessary for the diatom to produce a high level of domoic acid. Fish. Sci. 75, 771–776 (2009). (PMID: 10.1007/s12562-009-0081-5)
      McVeigh, I., & Brown, W. In vitro growth of chlamydomonas chlamydogama bold and haematococcus pluvialis flotow em. Wille in mixed cultures. Bulletin of the Torrey Botanical Club, 81(3), 218–233. https://doi.org/10.2307/2481813 (1954). (PMID: 10.2307/2481813)
      Sieg, R. D., Poulson-Ellestad, K. L. & Kubanek, J. Chemical ecology of the marine plankton. Nat. Prod. Rep. 28, 388–399 (2011). (PMID: 2114001410.1039/C0NP00051E)
      Yamasaki, A. An overview of CO 2 mitigation options for global warming—Emphasizing CO 2 sequestration options. J. Chem. Eng. Japan 36, 361–375 (2003). (PMID: 10.1252/jcej.36.361)
      Hajdu, S., Hoglander, H. & Larsson, U. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6, 189–205 (2007). (PMID: 10.1016/j.hal.2006.07.006)
      Berman-Frank, I. & Dubinsky, Z. Balanced growth in aquatic plants: Myth or reality? Phytoplankton use the imbalance between carbon assimilation and biomass production to their strategic advantage. Bioscience 49, 29–37 (1999). (PMID: 10.2307/1313491)
      Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 525–536. https://doi.org/10.1111/j.1469-8137.2005.01601.x (2006). (PMID: 10.1111/j.1469-8137.2005.01601.x16411955)
      Raven, J. A. & Beardall, J. Chlorophyll fluorescence and ecophysiology: Seeing red?. New Phytol. 169, 449–451. https://doi.org/10.1111/j.1469-8137.2006.01637.x (2006). (PMID: 10.1111/j.1469-8137.2006.01637.x16411948)
      Li, Q. et al. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming microcystis-epibiont communities. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00746 (2018). (PMID: 10.3389/fmicb.2018.00746308049236309737)
      Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54, 4–20 (2016). (PMID: 2807348010.1016/j.hal.2015.12.007)
      Caldwell, D. Associations between photosynthetic and heterotrophic prokaryotes in plankton. in Abstracts of the third International Symposium on Photosynthetic Prokaryotes (ed Nichols, J. M) (University of Liverpool, UK, 1979).
      Park, H. D. et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicol. Int. J. 16, 337–343 (2001). (PMID: 10.1002/tox.1041)
      Berg, C. et al. Dissection of microbial community functions during a cyanobacterial bloom in the Baltic Sea via metatranscriptomics. Front. Mar. Sci. 5, 55 (2018). (PMID: 10.3389/fmars.2018.00055)
      Humbert, J.-F. et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8, e70747. https://doi.org/10.1371/journal.pone.0070747 (2013). (PMID: 10.1371/journal.pone.0070747239509963741299)
      Toporowska, M., Mazur-Marzec, H. & Pawlik-Skowrońska, B. The effects of cyanobacterial bloom extracts on the biomass, Chl-a, MC and other oligopeptides contents in a natural Planktothrix agardhii population. Int. J. Env. Res. Public Health 17, 2881 (2020). (PMID: 10.3390/ijerph17082881)
      Grabowska, M., Kobos, J., Toruńska-Sitarz, A. & Mazur-Marzec, H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch. Microbiol. 196, 697–707 (2014). (PMID: 24972671416801910.1007/s00203-014-1008-9)
      Penn, K., Wang, J., Fernando, S. C. & Thompson, J. R. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME J. 8, 1866–1878 (2014). (PMID: 24646695413972010.1038/ismej.2014.27)
      Neilan, B. A. et al. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181, 4089–4097 (1999). (PMID: 103839799390110.1128/JB.181.13.4089-4097.1999)
      Long, B. M., Jones, G. J. & Orr, P. T. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 67, 278–283 (2001). (PMID: 111334569256410.1128/AEM.67.1.278-283.2001)
      Qu, J. et al. Determination of the role of microcystis aeruginosa in toxin generation based on phosphoproteomic profiles. Toxins 10, 304 (2018). (PMID: 607099910.3390/toxins10070304)
      Raven, J. A. Cyanotoxins: A poison that frees phosphate. Curr. Biol. 20, R850–R852 (2010). (PMID: 2093747210.1016/j.cub.2010.08.012)
      Utkilen, H. & Gjølme, N. Iron-stimulated toxin production in Microcystis aeruginosa. Appl. Environ. Microbiol. 61, 797–800 (1995). (PMID: 757461716734010.1128/aem.61.2.797-800.1995)
      Gan, N. et al. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ. Microbiol. 14, 730–742 (2012). (PMID: 2204011810.1111/j.1462-2920.2011.02624.x)
      Pomati, F., Rossetti, C., Manarolla, G., Burns, B. P. & Neilan, B. A. Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Microbiology 150, 455–461 (2004). (PMID: 1476692410.1099/mic.0.26350-0)
      Seigler, D. & Price, P. W. Secondary compounds in plants: Primary functions. Am. Nat. 110, 101–105 (1976). (PMID: 10.1086/283050)
      Zilliges, Y. et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6, e17615 (2011). (PMID: 21445264306082410.1371/journal.pone.0017615)
      Meissner, S., Fastner, J. & Dittmann, E. Microcystin production revisited: Conjugate formation makes a major contribution. Environ. Microbiol. 15, 1810–1820. https://doi.org/10.1111/1462-2920.12072 (2013). (PMID: 10.1111/1462-2920.1207223347128)
      Orr, P. T., Willis, A. & Burford, M. A. Application of first order rate kinetics to explain changes in bloom toxicity—The importance of understanding cell toxin quotas. J. Oceanol. Limnol. 36, 1063–1074. https://doi.org/10.1007/s00343-019-7188-z (2018). (PMID: 10.1007/s00343-019-7188-z)
      Rantala, A. et al. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad. Sci. USA 101, 568–573 (2004). (PMID: 1470190310.1073/pnas.0304489101)
      Orr, P. T. & Jones, G. J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43, 1604–1614 (1998). (PMID: 10.4319/lo.1998.43.7.1604)
      Burford, M. A. et al. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54, 44–53 (2016). (PMID: 2807348110.1016/j.hal.2015.10.012)
      Pierangelini, M. et al. Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO 2 partial pressure conditions. Appl. Environ. Microbiol. 81, 3069–3076. https://doi.org/10.1128/aem.03556-14 (2015). (PMID: 10.1128/aem.03556-14257249564393430)
      Falkowski, P. G., Sukenik, A. & Herzig, R. Nitrogen limitation in Isochrysis galbana (Haptophyceae). II. Relative abundance of chloroplast proteins. J. Phycol. 25, 471–478 (1989). (PMID: 10.1111/j.1529-8817.1989.tb00252.x)
      Turpin, D. H. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27, 14–20 (1991). (PMID: 10.1111/j.0022-3646.1991.00014.x)
      Moffitt, M. C. & Neilan, B. A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 70, 6353–6362 (2004). (PMID: 1552849252511510.1128/AEM.70.11.6353-6362.2004)
      Fewer, D. P. et al. New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLoS ONE 8, e73618 (2013). (PMID: 24040002376520010.1371/journal.pone.0073618)
      Fujii, K. et al. Comparative study of toxic and non-toxic cyanobacterial products: Novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Lett. 38, 5525–5528 (1997). (PMID: 10.1016/S0040-4039(97)01192-1)
      Ishida, K. et al. Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Appl. Environ. Microbiol. 75, 2017–2026 (2009). (PMID: 19201978266322310.1128/AEM.02258-08)
      Suikkanen, S., Fistarol, G. O. & Granéli, E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flosaquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308, 85–101 (2004). (PMID: 10.1016/j.jembe.2004.02.012)
      Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K. & Viitasalo, M. Allelopathy of Baltic Sea cyanobacteria: No evidence for the role of nodularin. J. Plankton Res. 28, 543–550. https://doi.org/10.1093/plankt/fbi139 (2006). (PMID: 10.1093/plankt/fbi139)
      Żak, A. & Kosakowska, A. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuar. Coast. Shelf Sci. 167, 113–118 (2015). (PMID: 10.1016/j.ecss.2015.07.038)
      Śliwińska-Wilczewska, S., Felpeto, A. B., Możdżeń, K., Vasconcelos, V. & Latała, A. Physiological effects on coexisting microalgae of the allelochemicals produced by the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena. Toxins 11, 712 (2019). (PMID: 695013310.3390/toxins11120712)
      Gross, E. M. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313–339 (2003). (PMID: 10.1080/713610859)
      Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42, 406–419 (2003). (PMID: 10.2216/i0031-8884-42-4-406.1)
      Leao, P. N., Vasconcelos, M. T. & Vasconcelos, V. M. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35, 271–282. https://doi.org/10.3109/10408410902823705 (2009). (PMID: 10.3109/1040841090282370519863381)
      MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P. & Codd, G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192 (1990). (PMID: 216278210.1016/0014-5793(90)80245-E)
      Pflugmacher, S. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol. Int. J. 17, 407–413 (2002). (PMID: 10.1002/tox.10071)
      Tilahun S. Exclusive partitioning of intra- and extra-cellular cyanotoxins: limitation of the conventional procedure. Environ. Sci. Pollut. Res. Int. 27(14), 17427–17428. https://doi.org/10.1007/s11356-020-08256-8 (2020). (PMID: 10.1007/s11356-020-08256-832144704)
      Park, H. D. et al. Temporal variabilities of the concentrations of intra-and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual. Int. J. 13, 61–72 (1998). (PMID: 10.1002/(SICI)1098-2256(1998)13:1<61::AID-TOX4>3.0.CO;2-5)
      Tsuji, K. et al. Stability of microcystins from cyanobacteria: Effect of light on decomposition and isomerization. Environ. Sci. Technol. 28, 173–177 (1994). (PMID: 2217584810.1021/es00050a024)
      Schatz, D. et al. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol. 9, 965–970 (2007). (PMID: 1735926810.1111/j.1462-2920.2006.01218.x)
      Makower, A. K. et al. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81, 544–554 (2015). (PMID: 25381232427757910.1128/AEM.02601-14)
      Kaplan, A. et al. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front. Microbiol. 3, 138 (2012). (PMID: 22529842332884810.3389/fmicb.2012.00138)
      Svercel, M. Negative allelopathy among cyanobacteria. in Cyanobacteria: Ecology, Toxicology and Management. (ed Ferrao-Filho, A. S.) 27–46 (Nova Science Publishers, New York, NY, USA, 2013).
      Wiegand, C. & Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 203, 201–218. https://doi.org/10.1016/j.taap.2004.11.002 (2005). (PMID: 10.1016/j.taap.2004.11.00215737675)
      Agrawal, M. & Agrawal, M. K. Cyanobacteria–herbivore interaction in freshwater ecosystem. J. Microbiol. Biotechnol. Res. 1, 52–66 (2011).
      Sadler, T. & von Elert, E. Dietary exposure of Daphnia to microcystins: No in vivo relevance of biotransformation. Aquat. Toxicol. 150, 73–82. https://doi.org/10.1016/j.aquatox.2014.02.017 (2014). (PMID: 10.1016/j.aquatox.2014.02.01724642294)
      Rohrlack, T., Christiansen, G. & Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 79, 2642–2647 (2013). (PMID: 23396340362320510.1128/AEM.03499-12)
      Sivonen, K. et al. Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl. Environ. Microbiol. 55, 1990–1995 (1989). (PMID: 250681220299210.1128/aem.55.8.1990-1995.1989)
      Burbage, C. D. & Binder, B. J. Relationship between cell cycle and light-limited growth rate in oceanic Prochlorococcus (MIT9312) and Synechococcus (WH8103) (Cyanobacteria). J. Phycol. 43, 266–274. https://doi.org/10.1111/j.1529-8817.2007.00315.x (2007). (PMID: 10.1111/j.1529-8817.2007.00315.x)
      Lei, L., Dai, J., Lin, Q., Peng, L. Competitive dominance of Microcystis aeruginosa against Raphidiopsis raciborskii is strain-and temperature dependent. Knowl. Manag. Aquat. Ecosyst. 421, 36. https://doi.org/10.1051/kmae/2020023 (2020). (PMID: 10.1051/kmae/2020023)
    • Accession Number:
      0 (Bacterial Proteins)
      0 (Peptides)
    • Subject Terms:
      Nodularia spumigena
    • Publication Date:
      Date Created: 20210427 Date Completed: 20211110 Latest Revision: 20230131
    • Publication Date:
      20250114
    • Accession Number:
      PMC8076297
    • Accession Number:
      10.1038/s41598-021-88361-x
    • Accession Number:
      33903638