Menu
×
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Ain NU;Ain NU;Ain NU; Qamar SUR; Qamar SUR; Qamar SUR
- Source:
Cardiovascular toxicology [Cardiovasc Toxicol] 2021 Jul; Vol. 21 (7), pp. 505-516. Date of Electronic Publication: 2021 Apr 22.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Humana Press Country of Publication: United States NLM ID: 101135818 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0259 (Electronic) Linking ISSN: 15307905 NLM ISO Abbreviation: Cardiovasc Toxicol Subsets: MEDLINE
- Publication Information: Original Publication: Totowa, NJ : Humana Press, c2001-
- Subject Terms: Air Pollutants/*adverse effects ; Air Pollution/*adverse effects ; Cardiovascular Diseases/*chemically induced ; Cardiovascular System/*drug effects ; Environmental Exposure/*adverse effects ; Particulate Matter/*adverse effects; Animals ; Cardiovascular Diseases/epidemiology ; Cardiovascular Diseases/metabolism ; Cardiovascular Diseases/physiopathology ; Cardiovascular System/metabolism ; Cardiovascular System/physiopathology ; Epigenesis, Genetic/drug effects ; Humans ; Inflammation Mediators/metabolism ; Oxidative Stress/drug effects ; Particle Size ; Prognosis ; Risk Assessment ; Risk Factors ; Time Factors
- Abstract: Air pollution and particulate matter (PM) are significant factors for adverse health effects most prominently cardiovascular disease (CVD). PM is produced from various sources, which include both natural and anthropogenic. It is composed of biological components, organic compounds, minerals, and metals, which are responsible for inducing inflammation and adverse health effects. However, the adverse effects are related to PM size distribution. Finer particles are a significant cause of cardiovascular events. This review discusses the direct and indirect mechanisms of PM-induced CVD like myocardial infarction, the elevation of blood pressure, cardiac arrhythmias, atherosclerosis, and thrombosis. The two potential mechanisms are oxidative stress and systemic inflammation. Prenatal exposure has also been linked with cardiovascular outcomes later in life. Moreover, we also mentioned the epidemiological studies that strongly associate PM with CVD.
- References: WHO. (2018). Burden of disease from the joint effects of household and ambient Air pollution for 2016. Geneva: WHO.
Miller, M. R. (2020). Oxidative stress and the cardiovascular effects of air pollution. Free Radical Biology and Medicine, 151, 69–87. https://doi.org/10.1016/j.freeradbiomed.2020.01.004. (PMID: 10.1016/j.freeradbiomed.2020.01.00431923583)
NO, N. D., SO, S. D., & CO, C. M. Air quality index.
Bryant, D. J., Dixon, W. J., Hopkins, J. R., Dunmore, R. E., Pereira, K. L., Shaw, M., et al. (2020). Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmospheric Chemistry and Physics (Print), 20(12), 7531–7552. https://doi.org/10.5194/acp-20-7531-2020. (PMID: 10.5194/acp-20-7531-2020)
Li, N., Georas, S., Alexis, N., Fritz, P., Xia, T., Williams, M. A., et al. (2016). A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. Journal of Allergy and Clinical Immunology, 138(2), 386–396. https://doi.org/10.1016/j.jaci.2016.02.023. (PMID: 10.1016/j.jaci.2016.02.023)
Erickson, A. C., & Arbour, L. (2014). The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development. Journal of Environmental and Public Health, 2014, 1. (PMID: 10.1155/2014/901017)
Di Domenico, M., de Menezes Benevenuto, S. G., Tomasini, P. P., Yariwake, V. Y., de Oliveira Alves, N., Rahmeier, F. L., et al. (2020). Concentrated ambient fine particulate matter (PM2. 5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology, 79, 127–141. (PMID: 10.1016/j.neuro.2020.05.004)
Lee, B.-J., Kim, B., & Lee, K. (2014). Air pollution exposure and cardiovascular disease. Toxicological Research, 30(2), 71–75. https://doi.org/10.5487/TR.2014.30.2.071. (PMID: 10.5487/TR.2014.30.2.071250719154112067)
Zhang, Z., Su, H., Ahmed, R. Z., Zheng, Y., & Jin, X. (2020). Critical biomarkers for myocardial damage by fine particulate matter: Focused on PPARα-regulated energy metabolism. Environmental Pollution, 264, 114659. https://doi.org/10.1016/j.envpol.2020.114659. (PMID: 10.1016/j.envpol.2020.11465932380395)
Wang, Y., Kong, L., Wu, T., & Tang, M. (2020). Urban particulate matter disturbs the equilibrium of mitochondrial dynamics and biogenesis in human vascular endothelial cells. Environmental Pollution, 264, 114639. (PMID: 10.1016/j.envpol.2020.114639)
Zhang, Y., Ding, Z., Xiang, Q., Wang, W., Huang, L., & Mao, F. (2020). Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. International Journal of Hygiene and Environmental Health, 224, 113418. https://doi.org/10.1016/j.ijheh.2019.11.001. (PMID: 10.1016/j.ijheh.2019.11.00131753527)
Amsalu, E., Wang, T., Li, H., Liu, Y., Wang, A., Liu, X., et al. (2019). Acute effects of fine particulate matter (PM2.5) on hospital admissions for cardiovascular disease in Beijing, China: a time-series study. Environmental Health, 18(1), 70. https://doi.org/10.1186/s12940-019-0506-2. (PMID: 10.1186/s12940-019-0506-2313709006670159)
Folino, F., Buja, G., Zanotto, G., Marras, E., Allocca, G., Vaccari, D., et al. (2017). Association between air pollution and ventricular arrhythmias in high-risk patients (ARIA study): A multicentre longitudinal study. The Lancet Planetary Health, 1(2), e58–e64. https://doi.org/10.1016/S2542-5196(17)30020-7. (PMID: 10.1016/S2542-5196(17)30020-729851582)
Wu, T., Ma, Y., Wu, X., Bai, M., Peng, Y., Cai, W., et al. (2019). Association between particulate matter air pollution and cardiovascular disease mortality in Lanzhou, China. Environmental Science and Pollution Research, 26(15), 15262–15272. https://doi.org/10.1007/s11356-019-04742-w. (PMID: 10.1007/s11356-019-04742-w30929170)
Cui, L., Shi, L., Li, D., Li, X., Su, X., Chen, L., et al. (2020). Real-Ambient Particulate Matter Exposure-Induced Cardiotoxicity in C57/B6 Mice. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2020.00199. (PMID: 10.3389/fphar.2020.00199336589247774101)
Leikauf, G. D., Kim, S.-H., & Jang, A.-S. (2020). Mechanisms of ultrafine particle-induced respiratory health effects. Experimental and Molecular Medicine, 52(3), 329–337. https://doi.org/10.1038/s12276-020-0394-0. (PMID: 10.1038/s12276-020-0394-032203100)
Owusu, P. A., & Sarkodie, S. A. (2020). Global estimation of mortality, disability-adjusted life years and welfare cost from exposure to ambient air pollution. Science of The Total Environment, 742, 140636. https://doi.org/10.1016/j.scitotenv.2020.140636. (PMID: 10.1016/j.scitotenv.2020.140636)
Hamanaka, R. B., & Mutlu, G. M. (2018). Particulate matter air pollution: Effects on the cardiovascular system. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2018.00680. (PMID: 10.3389/fendo.2018.00680305052916250783)
Liang, F., Liu, F., Huang, K., Yang, X., Li, J., Xiao, Q., et al. (2020). Long-term exposure to fine particulate matter and cardiovascular disease in China. Journal of the American College of Cardiology, 75(7), 707–717. https://doi.org/10.1016/j.jacc.2019.12.031. (PMID: 10.1016/j.jacc.2019.12.03132081278)
Khan, F., Kwapiszewska, K., Zhang, Y., Chen, Y., Lambe, A. T., Kołodziejczyk, A., et al. (2021). Toxicological responses of α-pinene-derived secondary organic aerosol and its molecular tracers in human lung cell lines. Chemical Research in Toxicology. https://doi.org/10.1021/acs.chemrestox.0c00409. (PMID: 10.1021/acs.chemrestox.0c00409336530287967287)
Marchini, T., Zirlik, A., & Wolf, D. (2020). Pathogenic role of air pollution particulate matter in cardiometabolic disease: Evidence from mice and humans. Antioxidants & Redox Signaling, 33(4), 263–279. (PMID: 10.1089/ars.2020.8096)
Grivas, G., Cheristanidis, S., Chaloulakou, A., Koutrakis, P., & Mihalopoulos, N. (2018). Elemental composition and source apportionment of fine and coarse particles at traffic and urban background locations in Athens, Greece. Aerosol and Air Quality Research, 18(7), 1642–1659. (PMID: 10.4209/aaqr.2017.12.0567)
Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., et al. (2020). Higher risk of cardiovascular disease associated with smaller size-fractioned particulate matter. Environmental Science & Technology Letters, 7(2), 95–101. https://doi.org/10.1021/acs.estlett.9b00735. (PMID: 10.1021/acs.estlett.9b00735)
Huang, K., Liang, F., Yang, X., Liu, F., Li, J., Xiao, Q., et al. (2019). Long term exposure to ambient fine particulate matter and incidence of stroke: prospective cohort study from the China-PAR project. BMJ, 367, 16720.
Liang, F., Xiao, Q., Gu, D., Xu, M., Tian, L., Guo, Q., et al. (2018). Satellite-based short-and long-term exposure to PM2.5 and adult mortality in urban Beijing, China. Environmental Pollution, 242, 492–499. (PMID: 10.1016/j.envpol.2018.06.097)
Wu, D., Zhang, H., Wu, Q., Li, F., Wang, Y., & Wang, S. L. (2020). Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages. Life Sciences, 267, 118941. (PMID: 10.1016/j.lfs.2020.118941)
Hooper, L. G., Young, M. T., Keller, J. P., Szpiro, A. A., O’Brien, K. M., Sandler, D. P., et al. (2018). Ambient air pollution and chronic bronchitis in a cohort of US women. Environmental Health Perspectives, 126(2), 027005. (PMID: 10.1289/EHP2199)
Guo, C., Zhang, Z., Lau, A. K., Lin, C. Q., Chuang, Y. C., Chan, J., et al. (2018). Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: A longitudinal, cohort study. The Lancet Planetary Health, 2(3), e114–e125. (PMID: 10.1016/S2542-5196(18)30028-7)
Yang, W., Zhu, Y., Cheng, W., Sang, H., Xu, H., Yang, H., et al. (2018). Effect of minerals and binders on particulate matter emission from biomass pellets combustion. Applied Energy, 215, 106–115. https://doi.org/10.1016/j.apenergy.2018.01.093. (PMID: 10.1016/j.apenergy.2018.01.093)
Jia, J., Cheng, S., Yao, S., Xu, T., Zhang, T., Ma, Y., et al. (2018). Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry. Atmospheric Environment, 182, 115–127. https://doi.org/10.1016/j.atmosenv.2018.03.051. (PMID: 10.1016/j.atmosenv.2018.03.051)
Pardo, M., Qiu, X., Zimmermann, R., & Rudich, Y. (2020). Particulate matter toxicity is nrf2 and mitochondria dependent: The roles of metals and polycyclic aromatic hydrocarbons. Chemical Research in Toxicology, 33(5), 1110–1120. (PMID: 10.1021/acs.chemrestox.0c00007)
Smith, D. M., Cui, T., Fiddler, M. N., Pokhrel, R. P., Surratt, J. D., & Bililign, S. (2020). Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels–Part 2: Chemical properties and characterization. Atmospheric Chemistry and Physics, 20(17), 10169–10191. (PMID: 10.5194/acp-20-10169-2020)
Setiawan, B., Kania, N., Nugrahenny, D., Nurdiana, N., & Widodo, M. A. (2014). Subchronic inhalation of particulate matter 10 coal dust induces atherosclerosis in the aorta of diabetic and nondiabetic rats. Biomarkers and Genomic Medicine, 6(2), 67–73. https://doi.org/10.1016/j.bgm.2014.03.002. (PMID: 10.1016/j.bgm.2014.03.002)
Wu, W., Jin, Y., & Carlsten, C. (2018). Inflammatory health effects of indoor and outdoor particulate matter. Journal of Allergy and Clinical Immunology, 141(3), 833–844. (PMID: 10.1016/j.jaci.2017.12.981)
Hou, L., Zhang, J., Zhang, C., Xu, Y., Zhu, X., Yao, C., et al. (2017). The injury of fine particulate matter from cooking oil fumes on umbilical cord blood vessels in vitro. Environmental Toxicology and Pharmacology, 49, 65–73. (PMID: 10.1016/j.etap.2016.11.013)
Rossner, P., Libalova, H., Cervena, T., Vrbova, K., Elzeinova, F., Milcova, A., et al. (2019). The processes associated with lipid peroxidation in human embryonic lung fibroblasts, treated with polycyclic aromatic hydrocarbons and organic extract from particulate matter. Mutagenesis, 34(2), 153–164. (PMID: 10.1093/mutage/gez004)
Zhang, Y., Wang, J., Gong, X., Chen, L., Zhang, B., Wang, Q., et al. (2020). Ambient PM2.5 exposures and systemic biomarkers of lipid peroxidation and total antioxidant capacity in early pregnancy. Environmental Pollution, 266, 115301. (PMID: 10.1016/j.envpol.2020.115301)
Bhargava, A., Shukla, A., Bunkar, N., Shandilya, R., Lodhi, L., Kumari, R., et al. (2019). Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environmental Pollution, 252, 39–50. (PMID: 10.1016/j.envpol.2019.05.065)
Lawal, A. O. (2017). Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways. Toxicology Letters, 270, 88–95. (PMID: 10.1016/j.toxlet.2017.01.017)
Fiordelisi, A., Piscitelli, P., Trimarco, B., Coscioni, E., Iaccarino, G., & Sorriento, D. (2017). The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Failure Reviews, 22(3), 337–347. https://doi.org/10.1007/s10741-017-9606-7. (PMID: 10.1007/s10741-017-9606-728303426)
Du, Y., Xu, X., Chu, M., Guo, Y., & Wang, J. (2016). Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8(1), E8–E19. https://doi.org/10.3978/j.issn.2072-1439.2015.11.37. (PMID: 10.3978/j.issn.2072-1439.2015.11.37269042584740122)
Wang, J., Huang, J., Wang, L., Chen, C., Yang, D., Jin, M., et al. (2017). Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. Journal of Thoracic Disease, 9(11), 4398–4412. https://doi.org/10.21037/jtd.2017.09.135. (PMID: 10.21037/jtd.2017.09.135292685095721041)
Ju, S., Lim, L., Jiao, H.-Y., Choi, S., Jun, J. Y., Ki, Y.-J., et al. (2020). Oxygenated polycyclic aromatic hydrocarbons from ambient particulate matter induce electrophysiological instability in cardiomyocytes. Particle and Fibre Toxicology, 17(1), 25. https://doi.org/10.1186/s12989-020-00351-5. (PMID: 10.1186/s12989-020-00351-5325272787288552)
Zhang, Y., Chu, M., Zhang, J., Duan, J., Hu, D., Zhang, W., et al. (2019). Urine metabolites associated with cardiovascular effects from exposure of size-fractioned particulate matter in a subway environment: A randomized crossover study. Environment International, 130, 104920. https://doi.org/10.1016/j.envint.2019.104920. (PMID: 10.1016/j.envint.2019.10492031228782)
Xiao, X., Yao, T., Du, S., Wang, J., Yan, P., Lei, Y., et al. (2020). Chronic real-time particulate matter exposure causes rat pulmonary arteriole hyperresponsiveness and remodeling: The role of ETBR-ERK1/2 signaling. Toxicology and Applied Pharmacology, 403, 115154. https://doi.org/10.1016/j.taap.2020.115154. (PMID: 10.1016/j.taap.2020.11515432710959)
Ho, C.-C., Chen, Y.-C., Yet, S.-F., Weng, C.-Y., Tsai, H.-T., Hsu, J.-F., et al. (2020). Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. Science of the Total Environment, 719, 137243. https://doi.org/10.1016/j.scitotenv.2020.137243. (PMID: 10.1016/j.scitotenv.2020.137243)
Moreno, T., Trechera, P., Querol, X., Lah, R., Johnson, D., Wrana, A., et al. (2019). Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology, 203, 52–59. (PMID: 10.1016/j.coal.2019.01.006)
de Groot, L. E., Liu, D., Dierdorp, B. S., Fens, N., van de Pol, M. A., Sterk, P. J., et al. (2020). Ex vivo innate responses to particulate matter from livestock farms in asthma patients and healthy individuals. Environmental Health, 19(1), 1–10. (PMID: 10.1186/s12940-020-00632-8)
Lai, C.-H., Huang, H.-B., Chang, Y.-C., Su, T.-Y., Wang, Y.-C., Wang, G.-C., et al. (2017). Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: A longitudinal study. Science of the Total Environment, 598, 289–296. (PMID: 10.1016/j.scitotenv.2017.04.079)
Wu, J., Tian, Y., Wu, Y., Wang, Z., Wu, Y., Wu, T., et al. (2021). Seasonal association between ambient fine particulate matter and venous thromboembolism in Beijing, China: A time-series study. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13035-0. (PMID: 10.1007/s11356-021-13035-034057630)
Hu, D., Jia, X., Cui, L., Liu, J., Chen, J., Wang, Y., et al. (2021). Exposure to fine particulate matter promotes platelet activation and thrombosis via obesity-related inflammation. Journal of Hazardous Materials, 413, 125341. https://doi.org/10.1016/j.jhazmat.2021.125341. (PMID: 10.1016/j.jhazmat.2021.12534133596527)
Münzel, T., & Daiber, A. (2019). The air pollution constituent particulate matter (PM2.5) destabilizes coronary artery plaques. European Heart Journal Cardiovascular Imaging, 20(12), 1365–1367. https://doi.org/10.1093/ehjci/jez261. (PMID: 10.1093/ehjci/jez26131628795)
Croft, D. P., Cameron, S. J., Morrell, C. N., Lowenstein, C. J., Ling, F., Zareba, W., et al. (2017). Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. Environmental Research, 154, 352–361. https://doi.org/10.1016/j.envres.2017.01.027. (PMID: 10.1016/j.envres.2017.01.027281674475375102)
Liu, L., Wan, C., Zhang, W., Guan, L., Tian, G., Zhang, F., et al. (2018). MiR-146a regulates PM1-induced inflammation via NF-jB signaling pathway in BEAS-2B cells. Environmental Toxicology, 33, 743–751. (PMID: 10.1002/tox.22561)
Kumar, S., Joos, G., Boon, L., Tournoy, K., Provoost, S., & Maes, T. (2017). Role of tumor necrosis factor–α and its receptors in diesel exhaust particle-induced pulmonary inflammation. Scientific Reports, 7(1), 1–10. (PMID: 10.1038/s41598-016-0028-x)
Gawda, A., Majka, G., Nowak, B., Śróttek, M., Walczewska, M., & Marcinkiewicz, J. (2018). Air particulate matter SRM 1648a primes macrophages to hyperinflammatory response after LPS stimulation. Inflammation Research, 67(9), 765–776. (PMID: 10.1007/s00011-018-1165-4)
Gałuszka, A., Stec, M., Węglarczyk, K., Kluczewska, A., Siedlar, M., & Baran, J. (2020). Transition metal containing particulate matter promotes Th1 and Th17 inflammatory response by monocyte activation in organic and inorganic compounds dependent manner. International Journal of Environmental Research and Public Health, 17(4), 1227. (PMID: 10.3390/ijerph17041227)
Dagouassat, M., Lanone, S., & Boczkowski, J. (2012). Interaction of matrix metalloproteinases with pulmonary pollutants. European Respiratory Journal, 39(4), 1021–1032. https://doi.org/10.1183/09031936.00195811. (PMID: 10.1183/09031936.00195811)
Silbajoris, R., Osornio-Vargas, A. R., Simmons, S. O., Reed, W., Bromberg, P. A., Dailey, L. A., et al. (2011). Ambient particulate matter induces interleukin-8 expression through an alternative NF-κB (nuclear factor-kappa B) mechanism in human airway epithelial cells. Environmental Health Perspectives, 119(10), 1379–1383. https://doi.org/10.1289/ehp.1103594. (PMID: 10.1289/ehp.1103594216655653230452)
Na, H. G., Kim, Y.-D., Choi, Y. S., Bae, C. H., & Song, S.-Y. (2019). Diesel exhaust particles elevate MUC5AC and MUC5B expression via the TLR4-mediated activation of ERK1/2, p38 MAPK, and NF-κB signaling pathways in human airway epithelial cells. Biochemical and Biophysical Research Communications, 512(1), 53–59. (PMID: 10.1016/j.bbrc.2019.02.146)
Longhin, E., Holme, J. A., Gualtieri, M., Camatini, M., & Øvrevik, J. (2018). Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicology In Vitro, 52, 365–373. (PMID: 10.1016/j.tiv.2018.07.016)
Kim, J. A., Cho, J. H., Park, I.-H., Shin, J.-M., Lee, S.-A., & Lee, H.-M. (2016). Diesel exhaust particles upregulate interleukins IL-6 and IL-8 in nasal fibroblasts. PLoS ONE, 11(6), e0157058–e0157058. https://doi.org/10.1371/journal.pone.0157058. (PMID: 10.1371/journal.pone.0157058272953004905665)
Dehcheshmeh, M. G., Ghadiri, A., Rashno, M., Assarehzadegan, M. A., Khodadadi, A., & Goudarzi, G. (2021). Effect of water-soluble PM 10 on the production of TNF-α by human monocytes and induction of apoptosis in A549 human lung epithelial cells. Journal of Environmental Health Science and Engineering. https://doi.org/10.1007/s40201-020-00588-4. (PMID: 10.1007/s40201-020-00588-4)
Pope, C. A., III., Bhatnagar, A., McCracken, J. P., Abplanalp, W., Conklin, D. J., & O’Toole, T. (2016). Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circulation Research, 119(11), 1204–1214. (PMID: 10.1161/CIRCRESAHA.116.309279)
Nabil-Adam, A., & Shreadah, M. A. (2021). Ameliorative role of Ulva extract against heavy metal mixture—Induced cardiovascular through oxidative/antioxidant pathways and inflammatory biomarkers. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11994-4. (PMID: 10.1007/s11356-020-11994-433496951)
Zhang, Q., Niu, Y., Xia, Y., Lei, X., Wang, W., Huo, J., et al. (2020). The acute effects of fine particulate matter constituents on circulating inflammatory biomarkers in healthy adults. Science of the Total Environment, 707, 135989. https://doi.org/10.1016/j.scitotenv.2019.135989. (PMID: 10.1016/j.scitotenv.2019.135989)
Tobaldini, E., Bollati, V., Prado, M., Fiorelli, E. M., Pecis, M., Bissolotti, G., et al. (2018). Acute particulate matter affects cardiovascular autonomic modulation and IFN-γ methylation in healthy volunteers. Environmental Research, 161, 97–103. (PMID: 10.1016/j.envres.2017.10.036)
Tanwar, V., Adelstein, J. M., Grimmer, J. A., Youtz, D. J., Katapadi, A., Sugar, B. P., et al. (2018). Preconception exposure to fine particulate matter leads to cardiac dysfunction in adult male offspring. Journal of the American Heart Association, 7(24), e010797. https://doi.org/10.1161/JAHA.118.010797. (PMID: 10.1161/JAHA.118.010797305612556405597)
Liao, Y.-H., Chen, W.-L., Wang, C.-C., & Lai, C.-H. (2020). Associations between personal exposure to metals in fine particulate matter and autonomic nervous system dysfunction among healthy adults. Aerosol and Air Quality Research, 20(8), 1842–1849. https://doi.org/10.4209/aaqr.2020.04.0156. (PMID: 10.4209/aaqr.2020.04.0156)
Ferrari, L., Carugno, M., & Bollati, V. (2019). Particulate matter exposure shapes DNA methylation through the lifespan. Clinical Epigenetics, 11(1), 129. https://doi.org/10.1186/s13148-019-0726-x. (PMID: 10.1186/s13148-019-0726-x314708896717322)
Baccarelli, A., Rienstra, M., & Benjamin, E. J. (2010). Cardiovascular epigenetics: Basic concepts and results from animal and human studies. Circulation Cardiovascular Genetics, 3(6), 567–573. (PMID: 10.1161/CIRCGENETICS.110.958744)
Breton, C. V., Gao, L., Yao, J., Siegmund, K. D., Lurmann, F., & Gilliland, F. (2016). Particulate matter, the newborn methylome, and cardio-respiratory health outcomes in childhood. Environmental epigenetics, 2(2), dvw005. (PMID: 10.1093/eep/dvw005)
Maghbooli, Z., Hossein-Nezhad, A., Ramezani, M., & Moattari, S. (2017). Epigenetic alterations and exposure to air pollutants: Protocol for a birth cohort study to evaluate the association between adverse birth outcomes and global DNA methylation. JMIR Research Protocols, 6(2), e29–e29. https://doi.org/10.2196/resprot.7114. (PMID: 10.2196/resprot.7114282323025344983)
Rosa, M. J., Hair, G. M., Just, A. C., Kloog, I., Svensson, K., Pizano-Zárate, M. L., et al. (2020). Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure. Environmental Research, 182, 109073. https://doi.org/10.1016/j.envres.2019.109073. (PMID: 10.1016/j.envres.2019.10907331881529)
Tse, G. (2016). Mechanisms of cardiac arrhythmias. Journal of Arrhythmia, 32(2), 75–81. (PMID: 10.1016/j.joa.2015.11.003)
Feng, B., Song, X., Dan, M., Yu, J., Wang, Q., Shu, M., et al. (2019). High level of source-specific particulate matter air pollution associated with cardiac arrhythmias. Science of the Total Environment, 657, 1285–1293. https://doi.org/10.1016/j.scitotenv.2018.12.178. (PMID: 10.1016/j.scitotenv.2018.12.178)
Wang, T., Lang, G. D., Moreno-Vinasco, L., Huang, Y., Goonewardena, S. N., Peng, Y.-J., et al. (2012). Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. American Journal of Respiratory Cell and Molecular Biology, 46(4), 524–531. https://doi.org/10.1165/rcmb.2011-0213OC. (PMID: 10.1165/rcmb.2011-0213OC221082995460922)
Farhadi, Z., Abulghasem Gorgi, H., Shabaninejad, H., Aghajani Delavar, M., & Torani, S. (2020). Association between PM2.5 and risk of hospitalization for myocardial infarction: A systematic review and a meta-analysis. BMC Public Health, 20(1), 314. https://doi.org/10.1186/s12889-020-8262-3. (PMID: 10.1186/s12889-020-8262-3321645967068986)
Hu, J., Tang, M., Zhang, X., Ma, Y., Li, Y., Chen, R., et al. (2020). Size-fractionated particulate air pollution and myocardial infarction emergency hospitalization in Shanghai, China. Science of the Total Environment, 737, 140100. https://doi.org/10.1016/j.scitotenv.2020.140100. (PMID: 10.1016/j.scitotenv.2020.140100)
Zheng, M., Zhang, Y., Feng, W., Chen, Y., Huan, L., Ye, S., et al. (2020). Short-term exposure to ambient air pollution and acute myocardial infarction attack risk. Journal of Public Health, 28(4), 367–374. https://doi.org/10.1007/s10389-019-01033-z. (PMID: 10.1007/s10389-019-01033-z)
Chen, K., Schneider, A., Cyrys, J., Wolf, K., Meisinger, C., Heier, M., et al. (2020). Hourly exposure to ultrafine particle metrics and the onset of myocardial infarction in Augsburg, Germany. Environmental Health Perspectives, 128(1), 017003. https://doi.org/10.1289/EHP5478. (PMID: 10.1289/EHP54787015564)
Kuźma, Ł, Pogorzelski, S., Struniawski, K., Bachórzewska-Gajewska, H., & Dobrzycki, S. (2020). Exposure to air pollution—A trigger for myocardial infarction? A nine-year study in Bialystok—The capital of the Green Lungs of Poland (BIA-ACS registry). International Journal of Hygiene and Environmental Health, 229, 113578. https://doi.org/10.1016/j.ijheh.2020.113578. (PMID: 10.1016/j.ijheh.2020.11357832758862)
Marchini, T., Wolf, D., Michel, N. A., Mauler, M., Dufner, B., Hoppe, N., et al. (2016). Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages. Basic Research in Cardiology, 111(4), 44–44. https://doi.org/10.1007/s00395-016-0562-5. (PMID: 10.1007/s00395-016-0562-5272408564886146)
Kotsis, V., Tsioufis, K., Antza, C., Seravalle, G., Coca, A., Sierra, C., et al. (2018). Obesity and cardiovascular risk: A call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part B: Obesity-induced cardiovascular disease, early prevention strategies and future research directions. Journal of Hypertension, 36(7), 1441–1455. https://doi.org/10.1097/hjh.0000000000001731. (PMID: 10.1097/hjh.000000000000173129652731)
Guo, Q., Xue, T., Jia, C., Wang, B., Cao, S., Zhao, X., et al. (2020). Association between exposure to fine particulate matter and obesity in children: A national representative cross-sectional study in China. Environment International, 143, 105950. https://doi.org/10.1016/j.envint.2020.105950. (PMID: 10.1016/j.envint.2020.10595032673910)
Wang, S., Wang, F., Yang, L., Li, Q., Huang, Y., Cheng, Z., et al. (2020). Effects of coal-fired PM2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE−/− mice. BMC Pharmacology and Toxicology, 21(1), 34. https://doi.org/10.1186/s40360-020-00411-8. (PMID: 10.1186/s40360-020-00411-832384920)
Pergoli, L., Cantone, L., Favero, C., Angelici, L., Iodice, S., Pinatel, E., et al. (2017). Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Particle and Fibre Toxicology, 14(1), 32. https://doi.org/10.1186/s12989-017-0214-4. (PMID: 10.1186/s12989-017-0214-4288994045594543)
Taleb, S. (2016). Inflammation in atherosclerosis. Archives of Cardiovascular Diseases, 109(12), 708–715. https://doi.org/10.1016/j.acvd.2016.04.002. (PMID: 10.1016/j.acvd.2016.04.00227595467)
Akintoye, E., Shi, L., Obaitan, I., Olusunmade, M., Wang, Y., Newman, J. D., et al. (2016). Association between fine particulate matter exposure and subclinical atherosclerosis: A meta-analysis. European Journal of Preventive Cardiology, 23(6), 602–612. https://doi.org/10.1177/2047487315588758. (PMID: 10.1177/204748731558875826025448)
Johnson, M., Brook, J. R., Brook, R. D., Oiamo, T. H., Luginaah, I., Peters, P. A., et al. (2020). Traffic‐related air pollution and carotid plaque burden in a Canadian City with low‐level ambient pollution. Journal of the American Heart Association, 9(7), e013400. https://doi.org/10.1161/JAHA.119.013400. (PMID: 10.1161/JAHA.119.013400322379767428640)
Renzi, M., Stafoggia, M., Michelozzi, P., Davoli, M., Forastiere, F., & Solimini, A. G. (2020). Short-term exposure to PM2.5 and risk of venous thromboembolism: A case-crossover study. Thrombosis Research, 190, 52–57. (PMID: 10.1016/j.thromres.2020.03.008) - Contributed Indexing: Keywords: Air pollution; Cardiac arrhythmia; Cardiac failure; Cardiovascular diseases; PM 2.5
- Accession Number: 0 (Air Pollutants)
0 (Inflammation Mediators)
0 (Particulate Matter) - Publication Date: Date Created: 20210422 Date Completed: 20220207 Latest Revision: 20220207
- Publication Date: 20231215
- Accession Number: 10.1007/s12012-021-09652-3
- Accession Number: 33886046
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.