Vitamins in wine: Which, what for, and how much?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Institute of Food Technologists Country of Publication: United States NLM ID: 101305205 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1541-4337 (Electronic) Linking ISSN: 15414337 NLM ISO Abbreviation: Compr Rev Food Sci Food Saf Subsets: MEDLINE
    • Publication Information:
      Original Publication: Chicago, Ill. : Institute of Food Technologists
    • Subject Terms:
    • Abstract:
      Vitamins are essential compounds to yeasts, and notably in winemaking contexts. Vitamins are involved in numerous yeast metabolic pathways, including those of amino acids, fatty acids, and alcohols, which suggests their notable implication in fermentation courses, as well as in the development of aromatic compounds in wines. Although they are major components in the course of those microbial processes, their significance and impact have not been extensively studied in the context of winemaking and wine products, as most of the studies focusing on the subject in the past decades have relied on relatively insensitive and imprecise analytical methods. Therefore, this review provides an extensive overview of the current knowledge regarding the impacts of vitamins on grape must fermentations, wine-related yeast metabolisms, and requirements, as well as on the profile of wine sensory characteristics. We also highlight the methodologies and techniques developed over time to perform vitamin analysis in wines, and assess the importance of precisely defining the role played by vitamins in winemaking processes, to ensure finer control of the fermentation courses and product characteristics in a highly complex matrix.
      (© 2021 Institute of Food Technologists®.)
    • References:
      Akiyama, S., Nakashima, K., Shirakawa, N., & Yamada, K. (1990). New column packing materials for separation of water-soluble vitamins by high-performance liquid chromatography. Bulletin of the Chemical Society of Japan, 63(10), 2809-2813. https://doi.org/10.1246/bcsj.63.2809.
      Akyilmaz, E., Yaşa, I., & Dinçkaya, E. (2006). Whole cell immobilized amperometric biosensor based on Saccharomyces cerevisiae for selective determination of vitamin B1 (thiamine). Analytical Biochemistry, 354(1), 78-84. https://doi.org/10.1016/j.ab.2006.04.019.
      Alamar, P. D., Caramês, E. T. S., Poppi, R. J., & Pallone, J. A. L. (2016). Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics. Food Research International, 85, 209-214. https://doi.org/10.1016/j.foodres.2016.04.027.
      Ali, A., & Karuppayil, S. (2018). Acetylcholine induces yeast to hyphal form transition in Candida albicans. Fungal Genomics & Biology, 8(1), 154. https://doi.org/10.4172/2165-8056.1000154.
      Amidzic, R., Brboric, J., Udina, O., & Vladimirov, S. (2005). RP-HPLC determination of vitamins B1, B3, B6, folic acid and B12 in multivitamin tablets. Journal of the Serbian Chemical Society, 70(10), 1229-1235. https://doi.org/10.2298/JSC0510229A.
      Andrianjaka-Camps, Z. N., Baumgartner, D., Camps, C., Guyer, E., Arrigoni, E., & Carlen, C. (2015). Prediction of raspberries puree quality traits by Fourier transform infrared spectroscopy. LWT - Food Science and Technology, 63(2), 1056-1062. https://doi.org/10.1016/j.lwt.2015.04.062.
      AOAC. (1968). AOAC Official Method 967.21: Ascorbic acid in vitamin preparations and juices. AOAC International.
      Arendse, E., Fawole, O. A., Magwaza, L. S., Nieuwoudt, H., & Opara, U. L. (2018). Comparing the analytical performance of near and mid infrared spectrometers for evaluating pomegranate juice quality. LWT - Food Science and Technology, 91(September 2017), 180-190. https://doi.org/10.1016/j.lwt.2018.01.035.
      Argade, V. P., & Pande, V. V. (2016). Influence of different fermentation conditions on the formulation and development of Amla (Emblica officinalis Gaertin.) wine. Indian Journal of Traditional Knowledge, 15(2), 254-259.
      Arvand, M., & Dehsaraei, M. (2013). A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles-modified carbon paste electrode. Materials Science and Engineering C, 33(6), 3474-3480. https://doi.org/10.1016/j.msec.2013.04.037.
      Aslam, J., Khan, S. H., & Khan, S. A. (2013). Quantification of water soluble vitamins in six date palm (Phoenix dactylifera L.) cultivar's fruits growing in Dubai, United Arab Emirates, through high performance liquid chromatography. Journal of Saudi Chemical Society, 17(1), 9-16. https://doi.org/10.1016/j.jscs.2011.02.015.
      Aurora-Prado, M. S., Silva, C. A., Tavares, M. F. M., & Altria, K. D. (2010). Rapid determination of water-soluble and fat-soluble vitamins in commercial formulations by MEEKC. Chromatographia, 72(7-8), 687-694. https://doi.org/10.1365/s10337-010-1704-9.
      Aznar, M., Lo, R., Cacho, J. F., & Ferreira, V. (2001). Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, Quantitative GC-MS, and odor evaluation of HPLC fractions. Journal of Agricultural and Food Chemistry, 49(6), 2924-2929.
      Backhus, L. E., DeRisi, J., Brown, P. O., & Bisson, L. F. (2001). Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Research, 1(2), 111-125. https://doi.org/10.1016/S1567-1356(01)00019-8.
      Baghizadeh, A., Karimi-Maleh, H., Khoshnama, Z., Hassankhani, A., & Abbasghorbani, M. (2015). A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Analytical Methods, 8(3), 549-557. https://doi.org/10.1007/s12161-014-9926-3.
      Baigent, M. J., & Carpenter, K. (2016). Vitamin. Encyclopaedia Britannica.
      Bailey, L. B., & Gregory, J. F. (1999). Folate metabolism and requirements. The Journal of Nutrition, 129(4), 779-782. https://doi.org/10.1093/jn/129.4.779.
      Ball, G. F. M. (Ed.). (1994a). Extraction of the water-soluble vitamins. In Water-soluble vitamin assays in human nutrition (pp. 121-141). Springer US. https://doi.org/10.1007/978-1-4615-2061-0_4.
      Ball, G. F. M. (Ed.). (1994b). Microbiological methods for the determination of the B-group vitamins. In Water-soluble vitamin assays in human nutrition (pp. 317-364). Springer US. https://doi.org/10.1007/978-1-4615-2061-0_7.
      Barnett, J. A., Payne, R. W., & Yarrow, D. (1990). Yeasts: Characteristics and identification. Cambridge University Press.
      Baś, B., Jakubowska, M., & Górski, Ł. (2011). Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2. Talanta, 84(4), 1032-1037. https://doi.org/10.1016/j.talanta.2011.03.006.
      Bataillon, M., Rico, A., Sablayrolles, J.-M., Salmon, J. M., & Barre, P. (1996). Early thiamin assimilation by yeasts under enological conditions: Impact on alcoholic fermentation kinetics. Journal of Fermentation and Bioengineering, 82(2), 145-150. https://doi.org/10.1016/0922-338X(96)85037-9.
      Bayly, A. M., Berglez, J. M., Patel, O., Castelli, L. A., Hankins, E. G., Coloe, P., Sibley, C. H., & Macreadie, I. G. (2001). Folic acid utilisation related to sulfa drug resistance in Saccharomyces cerevisiae. FEMS Microbiology Letters, 204(2), 387-390. https://doi.org/10.1016/S0378-1097(01)00437-2.
      Belda, I., Ruiz, J., Esteban-Fernández, A., Navascués, E., Marquina, D., Santos, A., & Moreno-Arribas, M. V. (2017). Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules, 22(2), 1-29. https://doi.org/10.3390/molecules22020189.
      Belenky, P. A., Moga, T. G., & Brenner, C. (2008). Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. Journal of Biological Chemistry, 283(13), 8075-8079. https://doi.org/10.1074/jbc.C800021200.
      Belenky, P. A., Stebbins, R., Bogan, K. L., Evans, C. R., & Brenner, C. (2011). Nrt1 and tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production. PLoS One, 6(5), e19710. https://doi.org/10.1371/journal.pone.0019710.
      Bely, M., Salmon, J. M., & Barre, P. (1994). Assimilable nitrogen addition and hexose transport system activity during enological fermentation. Journal of the Institute of Brewing, 100(4), 279-282. https://doi.org/10.1002/j.2050-0416.1994.tb00824.x.
      Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry (5th ed.). Freeman W.H.
      Berger, R. G., Drawert, F., & Kollmannsberger, H. (1989). The flavour of cape gooseberry (Physalis peruviana L.). Zeitschrift Für Lebensmittel-Untersuchung Und -Forschung, 188(2), 122-126. https://doi.org/10.1007/BF01042735.
      Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T., & Drennan, C. L. (2004). Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science, 303(5654), 76-79. https://doi.org/10.1126/science.1088493.
      Bertelsen, G., Ftnglas, P. M., Loughridge, J., Faulks, R. M., & Morgan, M. R. A. (1988). Investigation into the effects of conventional cooking on levels of thiamin (determined by HPLC) and pantothenic acid (determined by ELISA) in chicken. Food Sciences and Nutrition, 42(2), 83-96. https://doi.org/10.1080/09543465.1988.11904132.
      Bilgi Boyaci, B., Han, J. Y., Masatcioglu, M. T., Yalcin, E., Celik, S., Ryu, G. H., & Koksel, H. (2012). Effects of cold extrusion process on thiamine and riboflavin contents of fortified corn extrudates. Food Chemistry, 132(4), 2165-2170. https://doi.org/10.1016/j.foodchem.2011.12.013.
      Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E., & Chignell, C. F. (2000). Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochemistry and Photobiology, 71(2), 129-134. https://doi.org/10.1562/0031-8655(2000)071<0129:sipvbp>2.0.co;2.
      Blanco-Díaz, M. T., Del Río-Celestino, M., Martínez-Valdivieso, D., & Font, R. (2014). Use of visible and near-infrared spectroscopy for predicting antioxidant compounds in summer squash (Cucurbita pepo ssp. pepo). Food Chemistry, 164, 301-308. https://doi.org/10.1016/j.foodchem.2014.05.019.
      Blanco, M., & Villarroya, I. (2002). NIR spectroscopy: A rapid-response analytical tool. TrAC - Trends in Analytical Chemistry, 21(4), 240-250. https://doi.org/10.1016/S0165-9936(02)00404-1.
      Bohlscheid, J. C., Fellman, J. K., Wang, X. D., Ansen, D., & Edwards, C. G. (2007). The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations. Journal of Applied Microbiology, 102(2), 390-400. https://doi.org/10.1111/j.1365-2672.2006.03180.x.
      Boström Caselunghe, M., & Lindeberg, J. (2000). Biosensor-based determination of folic acid in fortified food. Food Chemistry, 70(4), 523-532. https://doi.org/10.1016/S0308-8146(00)00115-1.
      Boulton, R. B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1999). Principles and practices of winemaking. Springer. https://doi.org/10.1007/978-1-4757-6255-6.
      Bradshaw, M. P., Barril, C., Clark, A. C., Prenzler, P. D., & Scollary, G. R. (2011). Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Critical Reviews in Food Science and Nutrition, 51(6), 479-498. https://doi.org/10.1080/10408391003690559.
      Bradshaw, M. P., Prenzler, P. D., & Scollary, G. R. (2001). Ascorbic acid-induced browning of (+)-catechin in a model wine system. Journal of Agricultural and Food Chemistry, 49(2), 934-939. https://doi.org/10.1021/jf000782f.
      Burger, M., Hein, L. W., Teply, L. J., Derse, P. H., & Krieger, C. H. (1956). Vitamin, mineral, and proximate composition of frozen fruits, juices, and vegetables. Journal of Agricultural and Food Chemistry, 4(5), 418-425. https://doi.org/10.1021/jf00127a010.
      Burkholder, P. R. (1943). Vitamin deficiencies in yeasts. American Journal of Botany, 30(3), 206-211.
      Bürkle, A. (2005). Poly(ADP-ribose): The most elaborate metabolite of NAD+. FEBS Journal, 272(18), 4576-4589. https://doi.org/10.1111/j.1742-4658.2005.04864.x.
      Bushway, R. J., King, J. M., Perkins, B., & Krishnan, M. (1988). High-performance liquid chromatographic determination of ascorbic acid in fruits, vegetables and juices. Journal of Liquid Chromatography and Related Technologies, 11(16), 3415-3423. https://doi.org/10.1080/01483918808082264.
      Caelen, I., Kalman, A., & Wahlström, L. (2004). Biosensor-based determination of riboflavin in milk samples. Analytical Chemistry, 76(1), 137-143. https://doi.org/10.1021/ac034876a.
      Cantarelli, C. (1957). On the activation of alcoholic fermentation in wine making. American Journal of Enology and Viticulture, 8(4), 167-175. http://www.ajevonline.org/content/8/4/167.abstract.
      Caramês, E. T. S., Alamar, P. D., Poppi, R. J., & Pallone, J. A. L. (2017). Quality control of cashew apple and guava nectar by near infrared spectroscopy. Journal of Food Composition and Analysis, 56, 41-46. https://doi.org/10.1016/j.jfca.2016.12.002.
      Carman, G. M., & Han, G.-S. (2011). Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annual Review of Biochemistry, 80(1), 859-883. https://doi.org/10.1146/annurev-biochem-060409-092229.
      Castor, J. G. B. (1953). The B-complex vitamins of musts and wines as microbial growth factors. Applied Microbiology, 1(2), 97-102. https://doi.org/10.1128/aem.1.2.97-102.1953.
      Castor, J. G. B., & Archer, T. E. (1956). Amino acids in must and wines, proline, serine and threonine. American Journal of Enology and Viticulture, 7(1), 19-25. http://www.ajevonline.org/content/7/1/19.abstract.
      Cataldi, T. R. I., Nardiello, D., De Benedetto, G. E., & Bufo, S. A. (2002). Optimizing separation conditions for riboflavin, flavin mononucleotide and flavin adenine dinucleotide in capillary zone electrophoresis with laser-induced fluorescence detection. Journal of Chromatography A, 968(1-2), 229-239. https://doi.org/10.1016/S0021-9673(02)00953-6.
      Cataldi, T. R. I., Nardiello, D., Scrano, L., & Scopa, A. (2002). Assay of riboflavin in sample wines by capillary zone electrophoresis and laser-induced fluorescence detection. Journal of Agricultural and Food Chemistry, 50(23), 6643-6647. https://doi.org/10.1021/jf020212a.
      Champeau, C., Jaulmes, P., Bessiere, C., & Fourcade, S. (1963). Dosage microbiologique des vitamines et acides aminés dans les vins après différents traitements. Travaux de la Société de Pharmacie de Montpellier, 23, 361-369; 24, 36-41.
      Chandra-Hioe, M. V., Bucknall, M. P., & Arcot, J. (2011). Folate analysis in foods by UPLC-MS/MS: Development and validation of a novel, high throughput quantitative assay; folate levels determined in Australian fortified breads. Analytical and Bioanalytical Chemistry, 401(3), 1035-1042. https://doi.org/10.1007/s00216-011-5156-3.
      Chang, S. K. C., & Zhang, Y. (2017). Protein analysis. In S. Nielsen (Ed.). Food analysis (pp. 315-331). Springer. https://doi.org/10.1007/978-3-319-45776-5_18.
      Chang, Y.-S., Wu, C.-H., Chang, R.-J., & Shiuan, D. (1994). Determination of biotin concentration by a competitive enzyme-linked immunosorbent assay (ELISA) method. Journal of Biochemical and Biophysical Methods, 29(3-4), 321-329. https://doi.org/10.1016/0165-022X(94)90042-6.
      Chatterjee, A., Jurgenson, C. T., Schroeder, F. C., Ealick, S. E., & Begley, T. P. (2007). Biosynthesis of thiamin thiazole in eukaryotes: Conversion of NAD to an advanced intermediate. Journal of the American Chemical Society, 129(10), 2914-2922. https://doi.org/10.1021/ja067606t.
      Chen, C., Huo, J., Yin, J., Li, Y., Mao, H., Zhuo, Q., & Jia, X. (2020). High-throughout simultaneous detection of vitamin B12 and folate using intrinsic factor and folate binding protein. International Journal of Electrochemical Science, 15, 5262-5276. https://doi.org/10.20964/2020.06.18.
      Cheynier, V., & da Silva, J. M. R. (1991). Oxidation of grape procyanidins in model solutions containing trans-caffeoyltartaric acid and polyphenol oxidase. Journal of Agricultural and Food Chemistry, 39(6), 1047-1049. https://doi.org/10.1021/jf00006a008.
      Chiao, J. S., & Peterson, W. H. (1956). Some factors affecting the inhibitory action of thiamine on the growth of Saccharomyces carlsbergensis. Archives of Biochemistry and Biophysics, 64(1), 115-128. https://doi.org/10.1016/0003-9861(56)90248-X.
      Chini, E. (2009). CD38 as a regulator of cellular NAD: A novel potential pharmacological target for metabolic conditions. Current Pharmaceutical Design, 15(1), 57-63. https://doi.org/10.2174/138161209787185788.
      Chisholm, M. G., Guiher, L. A., Vonah, T. M., & Beaumont, J. L. (1994). Comparison of some French-American hybrid wines with white riesling using gas chromatography-olfactometry. American Journal of Enology and Viticulture, 45(2), 201-212. http://www.ajevonline.org/content/45/2/201.abstract.
      Coelho, C., Bagala, F., Gougeon, R. D., & Schmitt-Kopplin, P. (2016). Capillary electrophoresis in wine science. In Capillary electrophoresis: Methods and protocols, methods in molecular biology (Vol. 1483, pp. 509-523). Humana Press. https://doi.org/10.1007/978-1-4939-6403-1_23.
      Combs, G. F., & McClung, J. P. (2017a). Chapter 1 - What is a vitamin? In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 3-6). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00001-0.
      Combs, G. F., & McClung, J. P. (2017b). Chapter 10 - Vitamin C. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 267-295). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00010-1.
      Combs, G. F., & McClung, J. P. (2017c). Chapter 11 - Thiamin. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 297-314). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00011-3.
      Combs, G. F., & McClung, J. P. (2017d). Chapter 12 - Riboflavin. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 315-329). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00012-5.
      Combs, G. F., & McClung, J. P. (2017e). Chapter 13 - Niacin. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 331-350). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00013-7.
      Combs, G. F., & McClung, J. P. (2017f). Chapter 14 - Vitamin B6. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 351-370). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00014-9.
      Combs, G. F., & McClung, J. P. (2017g). Chapter 15 - Biotin. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 371-385). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00015-0.
      Combs, G. F., & McClung, J. P. (2017h). Chapter 16 - Pantothenic acid. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 387-398). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00016-2.
      Combs, G. F., & McClung, J. P. (2017i). Chapter 17 - Folate. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 399-429). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00017-4.
      Combs, G. F., & McClung, J. P. (2017j). Chapter 18 - Vitamin B12. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 431-452). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00018-6.
      Combs, G. F., & McClung, J. P. (2017k). Chapter 19 - Vitamin-like factors. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 453-498). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00019-8.
      Combs, G. F., & McClung, J. P. (2017l). Chapter 3 - General properties of vitamins. In G. F. Combs & E. McClung (Eds.), The vitamins (5th edition): Fundamental aspects in nutrition and health (pp. 33-58). Academic Press. https://doi.org/10.1016/B978-0-12-802965-7.00003-4.
      Combs, G. F., & McClung, J. P. (2017m). The vitamins: Fundamental aspects in nutrition and health (5th ed.). Academic Press.
      Commission Européenne. (2019). Règlement délégué (UE) 2019/934 de la Commission du 12 mars 2019 complétant le règlement (UE) n° 1308/2013 du Parlement européen et du Conseil en ce qui concerne les zones viticoles où le titre alcoométrique peut être augmenté, les pratiques œnologiques a. Journal Officiel de l'Union Européenne, L-149, 1-151.
      Cooper, T. G. (1982). Nitrogen metabolism in Saccharomyces cerevisiae. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, 2, 39-99.
      Coquille, S., Roux, C., Fitzpatrick, T. B., & Thore, S. (2012). The last piece in the vitamin B1 biosynthesis puzzle: Structural and functional insight into yeast 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase. Journal of Biological Chemistry, 287(50), 42333-42343. https://doi.org/10.1074/jbc.M112.397240.
      Coulter, A. D., Godden, P. W., & Pretorius, I. S. (2004). Succinic acid-How it is formed, what is its effect on titratable acidity, and what factors influence its concentration in wine? Australian and New Zealand Wine Industry Journal, 19, 16-25. http://ci.nii.ac.jp/naid/20001310430/en/.
      Culver, G. M., McCraith, S. M., Consaul, S. A., Stanford, D. R., & Phizicky, E. M. (1997). A 2’-phosphotransferase implicated in tRNA splicing is essential in Saccharomyces cerevisiae. Journal of Biological Chemistry, 272(20), 13203-13210. https://doi.org/10.1074/jbc.272.20.13203.
      da Silva, D. C., Visentainer, J. V., de Souza, N. E., & Oliveira, C. C. (2013). Micellar electrokinetic chromatography method for determination of the ten water-soluble vitamins in food supplements. Food Analytical Methods, 6(6), 1592-1606. https://doi.org/10.1007/s12161-013-9576-x.
      da Silva, T. L., Aguiar-Oliveira, E., Mazalli, M. R., Kamimura, E. S., & Maldonado, R. R. (2017). Comparison between titrimetric and spectrophotometric methods for quantification of vitamin C. Food Chemistry, 224, 92-96. https://doi.org/10.1016/j.foodchem.2016.12.052.
      Dani, C., Oliboni, L. S., Vanderlinde, R., Bonatto, D., Salvador, M., & Henriques, J. A. P. (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food and Chemical Toxicology, 45(12), 2574-2580. https://doi.org/10.1016/j.fct.2007.06.022.
      Dasgupta, A. (2019). Biotin and other interferences in immunoassays: A concise guide. Elsevier Science. https://books.google.fr/books?id=Jt2DDwAAQBAJ.
      Derradji-Benmeziane, F., Djamai, R., & Cadot, Y. (2014). Antioxidant capacity, total phenolic, carotenoid, and Vitamin C contents of five table grape varieties from Algeria and their correlations. Journal International Des Sciences de La Vigne et Du Vin, 48(2), 153-162. https://doi.org/10.20870/oeno-one.2014.48.2.1564.
      Deutsch, J. C., & Kolhouse, J. F. (1993). Ascorbate and dehydroascorbate measurements in aqueous solutions and plasma determined by gas chromatography-mass spectrometry. Analytical Chemistry, 65(4), 321-326. https://doi.org/10.1021/ac00052a003.
      Di Salvo, M. L., Contestabile, R., & Safo, M. K. (2011). Vitamin B6 salvage enzymes: Mechanism, structure and regulation. Biochimica et Biophysica Acta - Proteins and Proteomics, 1814(11), 1597-1608. https://doi.org/10.1016/j.bbapap.2010.12.006.
      Dias, D. A., Ghiggino, K. P., Smith, T. A., & Scollary, G. R. (2010). Wine bottle colour and oxidative spoilage. School of Chemistry, University of Melbourne.
      Dias, D. A., Smith, T. A., Ghiggino, K. P., & Scollary, G. R. (2012). The role of light, temperature and wine bottle colour on pigment enhancement in white wine. Food Chemistry, 135(4), 2934-2941. https://doi.org/10.1016/j.foodchem.2012.07.068.
      Dixon, B., & Rose, A. H. (1964). Observations on the fine structure of Saccharomyces cerevisiae as affected by biotin deficiency. Journal of General Microbiology, 35(3), 411-419. https://doi.org/10.1099/00221287-35-3-411.
      do Lago, C. L., & Cieslarová, Z. (2018). Determination of B-vitamins in energy drinks by CE/MS/MS. Agilent.
      Donahue, T. F., & Henry, S. A. (1981). myo-Inositol-1-phosphate synthase: Characteristics of the enzyme and identification of its structural gene in yeast. Journal of Biological Chemistry, 256(13), 7077-7085.
      du Toit, W. J., Marais, J., Pretorius, I. S., & du Toit, M. (2006). Substrates for oxidation in wine. South African Journal of Enology and Viticulture, 27(1), 76-94.
      Dubernet, M., Ribereau-Gayon, P., Lerner, H. R., Harel, E., & Mayer, A. M. (1977). Purification and properties of laccase from Botrytis cinerea. Phytochemistry, 16(2), 191-193. https://doi.org/10.1016/S0031-9422(00)86783-7.
      Duc, C., Pradal, M., Sanchez, I., Noble, J., Tesnière, C., & Blondin, B. (2017). A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS One, 12(9), 1-22. https://doi.org/10.1371/journal.pone.0184838.
      Edwards, K. A., Tu-Maung, N., Cheng, K., Wang, B., Baeumner, A. J., & Kraft, C. E. (2017). Thiamine assays-Advances, challenges, and caveats. ChemistryOpen, 6(2), 178-191. https://doi.org/10.1002/open.201600160.
      Eglinton, J., & Henschke, P. (1993). Can the addition of vitamins during fermentation be justified? Australian Grapegrower and Winemaker, 352, 47-49, 51-52.
      Eitenmiller, R. R., Landen, W. O., & Ye, L. (2007). Vitamin analysis for the health and food sciences. CRC Press. https://doi.org/10.1201/9781420009750.
      Elias, R. J., & Waterhouse, A. L. (2010). Controlling the Fenton reaction in wine. Journal of Agricultural and Food Chemistry, 58(3), 1699-1707. https://doi.org/10.1021/jf903127r.
      Enjo, F., Nosaka, K., Ogata, M., Iwashima, A., & Nishimura, H. (1997). Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. Journal of Biological Chemistry, 272(31), 19165-19170. https://doi.org/10.1074/jbc.272.31.19165.
      Ericsson, A., Mojzita, D., Schmidt, H., & Hohmann, S. (2008). Case study in systematic modelling: Thiamine uptake in the yeast Saccharomyces cerevisiae. Essays in Biochemistry, 45(February), 135-146. https://doi.org/10.1042/BSE0450135.
      Es-Safi, N. E., Cheynier, V., & Moutounet, M. (2003). Effect of copper on oxidation of (+)-catechin in a model solution system. International Journal of Food Science & Technology, 38, 153-163. https://doi.org/10.1046/j.1365-2621.2003.00656.x.
      Eschenbruch, R. (1974). Sulfite and sulfide formation during winemaking - A review. American Journal of Enology and Viticulture, 25(3), 157-161. http://www.ajevonline.org/content/25/3/157.abstract.
      Ewart, A. J. W., Sitters, J. H., & Brien, C. J. (1987). The use of sodium erythorbate in white grape musts. The Australian and New Zealand Wine Industry Journal, 2(2), 59-64.
      Fan, B., You, J., Suo, Y., & Qian, C. (2018). A novel and sensitive method for determining vitamin B3 and B7 by pre-column derivatization and high-performance liquid chromatography method with fluorescence detection. PLoS One, 13(6), 1-15. https://doi.org/10.1371/journal.pone.0198102.
      Ferreira, D., Galeote, V., Sanchez, I., Legras, J. L., Ortiz-Julien, A., & Dequin, S. (2017). Yeast multistress resistance and lag-phase characterisation during wine fermentation. FEMS Yeast Research, 17(6), 1-11. https://doi.org/10.1093/femsyr/fox051.
      Ferreira, V., López, R., & Cacho, J. F. (2000). Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture, 80(11), 1659-1667. https://doi.org/10.1002/1097-0010(20000901)80:11<1659::AID-JSFA693>3.0.CO;2-6.
      Ferreira, V., Ortín, N., Escudero, A., López, R., & Cacho, J. (2002). Chemical characterization of the aroma of grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. Journal of Agricultural and Food Chemistry, 50(14), 4048-4054.
      Finglas, P. M., Faulks, R. M., Morris, H. C., Scott, K. J., & Morgan, M. R. A. (1988). Development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of pantothenic acid and analogues. II. Determination of pantothenic acid in foods. Journal of Micronutrient Analysis, 4, 47-59.
      Fotsing, L., Fillet, M., Bechet, I., Hubert, P., & Crommen, J. (1997). Determination of six water-soluble vitamins in a pharmaceutical formulation by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 15(8), 1113-1123. https://doi.org/10.1016/S0731-7085(96)02010-9.
      Fowles, G. W. A. (1992). Acids in grapes and wines: A review. Journal of Wine Research, 3(1), 25-41. https://doi.org/10.1080/09571269208717912.
      Fracassetti, D., & Vigentini, I. (2018). Occurrence and analysis of sulfur compounds in wine. In A. M. Jordão & F. Cosme (Eds.), Grapes and wines - Advances in production, processing, analysis and valorization. IntechOpen. https://doi.org/10.5772/intechopen.72823.
      Gadzala-Kopciuch, R., Szumski, M., & Buszewski, B. (2003). Determination of biotin in pharmaceutical preparation by means of HPLC and/or MEKC. Journal of Liquid Chromatography and Related Technologies, 26(2), 195-205. https://doi.org/10.1081/JLC-120017163.
      Gao, Y., Guo, F., Gokavi, S., Chow, A., Sheng, Q., & Guo, M. (2008). Quantification of water-soluble vitamins in milk-based infant formulae using biosensor-based assays. Food Chemistry, 110(3), 769-776. https://doi.org/10.1016/j.foodchem.2008.03.007.
      Genevois, L., & Ribéreau-Gayon, J. (1947). Le vin. Hermann & Cie.
      Giacosa, S., Río Segade, S., Cagnasso, E., Caudana, A., Rolle, L., & Gerbi, V. (2019). SO2 in wines: Rational use and possible alternatives. In A. Morata (Ed.), Red wine technology (pp. 309-321). Academic Press. https://doi.org/10.1016/B978-0-12-814399-5.00021-9.
      Gliszczyńska-Świgło, A., & Rybicka, I. (2015). Simultaneous determination of caffeine and water-soluble vitamins in energy drinks by HPLC with photodiode array and fluorescence detection. Food Analytical Methods, 8(1), 139-146. https://doi.org/10.1007/s12161-014-9880-0.
      Gonthier, A., Boullanger, P., Fayol, V., & Hartmann, D. J. (1998). Development of an ELISA for pantothenic acid (vitamin B5) for application in the nutrition and biological fields. Journal of Immunoassay, 19(2-3), 167-194. https://doi.org/10.1080/01971529808005479.
      Gonthier, A., Fayol, V., Viollet, J., & Hartmann, D. J. (1998). Determination of pantothenic acid in foods: Influence of the extraction method. Food Chemistry, 63(2), 287-294. https://doi.org/10.1016/S0308-8146(97)00136-2.
      Goode, J. (2005). The science of wine: From vine to glass. University of California Press. https://books.google.fr/books?id=9hCk1J_5ozIC.
      Gregory, J. F. (2012). Accounting for differences in the bioactivity and bioavailability of vitamers. Food and Nutrition Research, 56, 1-11. https://doi.org/10.3402/fnr.v56i0.5809.
      Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors - Sensor principles and architectures. Sensors, 8(3), 1400-1458. https://doi.org/10.3390/s80314000.
      Grogan, D. W. (1988). Temperature-sensitive murein synthesis in an Escherichia coli pdx mutant and the role of alanine racemase. Archives of Microbiology, 150(4), 363-367. https://doi.org/10.1007/BF00408308.
      Gudipati, V., Koch, K., Lienhart, W. D., & Macheroux, P. (2014). The flavoproteome of the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta - Proteins and Proteomics, 1844(3), 535-544. https://doi.org/10.1016/j.bbapap.2013.12.015.
      Güldener, U., Koehler, G. J., Haussmann, C., Bacher, A., Kricke, J., Becher, D., & Hegemann, J. H. (2004). Characterization of the Saccharomyces cerevisiae Fol1 protein: Starvation for C1 carrier induces pseudohyphal growth. Molecular Biology of the Cell, 15(8), 3811-3828. https://doi.org/10.1091/mbc.e03-09-0680.
      Hagen, K. M., Keller, M., & Edwards, C. G. (2008). Survey of biotin, pantothenic acid, and assimilable nitrogen in winegrapes from the Pacific Northwest. American Journal of Enology and Viticulture, 59(4), 432-436. http://www.ajevonline.org/content/59/4/432.abstract.
      Hall, A. P., Brinner, L., Amerine, M. A., & Morgan, A. F. (1956). The B vitamin content of grapes, musts, and wines. Journal of Food Science, 21(3), 362-371. https://doi.org/10.1111/j.1365-2621.1956.tb16932.x.
      Hall, C., & Dietrich, F. S. (2007). The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics, 177(4), 2293-2307. https://doi.org/10.1534/genetics.107.074963.
      Halma, M., Doumèche, B., Hecquet, L., Prévot, V., Mousty, C., & Charmantray, F. (2017). Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate. Biosensors and Bioelectronics, 87(September 2016), 850-857. https://doi.org/10.1016/j.bios.2016.09.049.
      Hancock, R. D., Galpin, J. R., & Viola, R. (2000). Biosynthesis of L-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiology Letters, 186(2), 245-250. https://doi.org/10.1016/S0378-1097(00)00155-5.
      Hanes, J. W., Burns, K. E., Hilmey, D. G., Chatterjee, A., Dorrestein, P. C., & Begley, T. P. (2008). Mechanistic studies on pyridoxal phosphate synthase: The reaction pathway leading to a chromophoric intermediate. Journal of the American Chemical Society, 130(10), 3043-3052. https://doi.org/10.1021/ja076604l.
      Hannemann, W. (1985). Ausscheidung von essigsäure durch gärende hefen und die reinigung und charakterisierung einer NADP-spezifischen aldehyd-dehydrogenase aus sacharomyces cerevisiae. Johannes Gutenberg-Universität Mainz.
      Hazelwood, L. A., Daran, J. M., Van Maris, A. J. A., Pronk, J. T., & Dickinson, J. R. (2008). The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology, 74(8), 2259-2266. https://doi.org/10.1128/AEM.02625-07.
      Henry, S. A., Kohlwein, S. D., & Carman, G. M. (2012). Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics, 190(2), 317-349. https://doi.org/10.1534/genetics.111.130286.
      Henschke, P. A., & Jiranek, V. (1993). Yeast: Metabolism of nitrogen compounds. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 77-164). Harwood Academic.
      Hjortmo, S., Patring, J., & Andlid, T. (2008). Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. International Journal of Food Microbiology, 123(1-2), 93-100. https://doi.org/10.1016/j.ijfoodmicro.2007.12.004.
      Hoegger, D., Morier, P., Vollet, C., Heini, D., Reymond, F., & Rossier, J. S. (2007). Disposable microfluidic ELISA for the rapid determination of folic acid content in food products. Analytical and Bioanalytical Chemistry, 387(1), 267-275. https://doi.org/10.1007/s00216-006-0948-6.
      Hohmann, S., & Meacock, P. A. (1998). Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: Genetic regulation. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1385(2), 201-219. https://doi.org/10.1016/S0167-4838(98)00069-7.
      Hoja, U., Marthol, S., Hofmann, J., Stegner, S., Schulz, R., Meier, S., Greiner, E., & Schweizer, E. (2004). HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 279(21), 21779-21786. https://doi.org/10.1074/jbc.M401071200.
      Hosono, K., Aida, K., & Uemura, T. (1972). Effect of pantothenic acid on respiratory activity of aerobically grown Saccharomyces cerevisiae. The Journal of General and Applied Microbiology, 18(3), 189-199. https://doi.org/10.2323/jgam.18.189.
      Hucker, B., Wakeling, L., & Vriesekoop, F. (2011). The quantitative analysis of thiamin and riboflavin and their respective vitamers in fermented alcoholic beverages. Journal of Agricultural and Food Chemistry, 59, 12278-12285.
      Iyer, R., & Tomar, S. K. (2013). Determination of folate/folic acid level in milk by microbiological assay, immuno assay and high performance liquid chromatography. Journal of Dairy Research, 80(2), 233-239. https://doi.org/10.1017/S0022029913000149.
      Jackson, R. (2008). Wine science: Principles, practice, perception. Academic Press. https://doi.org/10.1016/B978-0-12-373646-8.X5001-X.
      Jamali, T., Karimi-Maleh, H., & Khalilzadeh, M. A. (2014). A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT - Food Science and Technology, 57(2), 679-685. https://doi.org/10.1016/j.lwt.2014.01.023.
      John, R. A. (1995). Pyridoxal phosphate-dependent enzymes. Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular, 1248(2), 81-96. https://doi.org/10.1016/0167-4838(95)00025-P.
      Johnson, B. C. (1946). Microbiological vitamin assay methods. The Science Teacher, 13(2), 64-65, 86, 88-89, 96.
      Jones, R. P., Pamment, N., & Greenfield, P. F. (1981). Alcohol fermentation by yeasts-the effect of environmental and other variables. Process Biochemistry, 16(3), 42-49.
      Jope, R. S., & Jenden, D. J. (1980). The utilization of choline and acetyl coenzyme A for the synthesis of acetylcholine. Journal of Neurochemistry, 35(2), 318-325. https://doi.org/10.1111/j.1471-4159.1980.tb06267.x.
      Juhász, O., Dworschák, E., & Kozma, P. (1987). Nutritive value of different grape musts (Vitis vinifera L.). Plant Foods for Human Nutrition, 37(3), 275-281. https://doi.org/10.1007/BF01091793.
      Käck, H., Sandmark, J., Gibson, K., Schneider, G., & Lindqvist, Y. (1999). Crystal structure of diaminopelargonic acid synthase: Evolutionary relationships between pyridoxal-5’-phosphate-dependent enzymes. Journal of Molecular Biology, 291(4), 857-876. https://doi.org/10.1006/jmbi.1999.2997.
      Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30.
      Karabagias, I. K., Maia, M., Karabournioti, S., Gatzias, I., Karabagias, V. K., & Badeka, A. V. (2020). Palynological, physicochemical, biochemical and aroma fingerprints of two rare honey types. European Food Research and Technology, 246, 1725-1739. https://doi.org/10.1007/s00217-020-03526-8.
      Kato, M., & Lin, S.-J. (2014). Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair, 23(1), 49-58. https://doi.org/10.1016/j.dnarep.2014.07.009.
      Kawai, S., Suzuki, S., Mori, S., & Murata, K. (2001). Molecular cloning and identification of UTR1 of a yeast Saccharomyces cerevisiae as a gene encoding an NAD kinase. FEMS Microbiology Letters, 200(2), 181-184. https://doi.org/10.1016/S0378-1097(01)00215-4.
      Kawasaki, Y., Onozuka, M., Mizote, T., & Nosaka, K. (2005). Biosynthesis of hydroxymethylpyrimidine pyrophosphate in Saccharomyces cerevisiae. Current Genetics, 47(3), 156-162. https://doi.org/10.1007/s00294-004-0557-x.
      Kergaravat, S. V., Gómez, G. A., Fabiano, S. N., Laube Chávez, T. I., Pividori, M. I., & Hernández, S. R. (2012). Biotin determination in food supplements by an electrochemical magneto biosensor. Talanta, 97, 484-490. https://doi.org/10.1016/j.talanta.2012.05.003.
      Khaloo, S. S., Mozaffari, S., Alimohammadi, P., Kargar, H., & Ordookhanian, J. (2016). Sensitive and selective determination of riboflavin in food and pharmaceutical samples using manganese (III) tetraphenylporphyrin modified carbon paste electrode. International Journal of Food Properties, 19(10), 2272-2283. https://doi.org/10.1080/10942912.2015.1130054.
      Kim, M., Yoon, S. H., Jung, M., & Choe, E. (2010). Stability of meoru (Vitis coignetiea) anthocyanins under photochemically produced singlet oxygen by riboflavin. New Biotechnology, 27(4), 435-439. https://doi.org/10.1016/j.nbt.2010.01.003.
      Kirkland, J. B., & Meyer-Ficca, M. L. (2018). Niacin. Advances in Food and Nutrition Research, 83, 83-149. https://doi.org/10.1016/bs.afnr.2017.11.003.
      Kıvrak, Ş., Kıvrak, İ., & Karababa, E. (2016). Nutritional value, phenolic, vitamin and mineral contents of a fermented beverage from grapes of “merlot” and “cabernet sauvignon.” Mitteilungen Klosterneuburg, 66(3), 255-265.
      Klesk, K., & Qian, M. (2003). Aroma extract dilution analysis of Cv. Marion (Rubus spp. hyb) and Cv. Evergreen (R. laciniatus L.) blackberries. Journal of Agricultural and Food Chemistry, 51(11), 3436-3441. https://doi.org/10.1021/jf0262209.
      Koser, S. A. (1968). Vitamin requirements of bacteria and yeasts. Charles C. Thomas.
      Kotseridis, Y., & Baumes, R. (2000). Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. Journal of Agricultural and Food Chemistry, 48(2), 400-406. https://doi.org/10.1021/jf990565i.
      Kotseridis, Y., Baumes, R., & Skouroumounis, G. K. (1998). Synthesis of labelled [2H4]β-damascenone, [2H2]2-methoxy-3- isobutylpyrazine, [2H3]α-ionone, and [2H3]β-ionone, for quantification in grapes, juices and wines. Journal of Chromatography A, 824(1), 71-78.
      Kováts, E. S. (1987). Composition of essential oils. Part 7. Bulgarian oil of rose (Rosa damascena Mill). Journal of Chromatography, 406, 185-222.
      Kuiper, C., & Vissers, M. C. M. (2014). Ascorbate as a cofactor for Fe-and 2-oxoglutarate dependent dioxygenases: Physiological activity in tumour growth and progression. Frontiers in Oncology, 4(NOV), 1-11. https://doi.org/10.3389/fonc.2014.00359.
      Kulkarni, S. P., & Amin, P. D. (2000). Stability indicating HPTLC determination of timolol maleate as bulk drug and in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 23(6), 983-987. https://doi.org/10.1016/S0731-7085(00)00389-7.
      Labuschagne, P. W. J., & Divol, B. (2021). Thiamine: A key nutrient for yeasts during wine alcoholic fermentation. Applied Microbiology and Biotechnology, 105(3), 953-973. https://doi.org/10.1007/s00253-020-11080-2.
      Lafon-Lafourcade, S. (1983). Wine and brandy. In H. J. Rehm & G. Reed (Eds.), Food and feed production with microorganisms (Vol. 5, pp. 83-163). VCH. http://ci.nii.ac.jp/naid/10020354062/en/.
      Lafourcade, S., Peynaud, E., & Ribereau-Gayon, J. (1956). Different forms of nicotinamide in wine. Bulletin de la Societe de Chimie Biologique, 38(5-6), 923-930.
      Lai, K., & McGraw, P. (1994). Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. The Journal of Biological Chemistry, 269(3), 2245-2251. http://www.ncbi.nlm.nih.gov/pubmed/8294482.
      Lambrechts, M. G., & Pretorius, I. S. (2000). Yeast and its importance to wine aroma - A review. South African Journal of Enology & Viticulture, 21(1), 97-129. https://doi.org/10.21548/21-1-3560.
      Laser, H. (1941). The effect of thiamine (vitamin B1) on fermentation of yeast. Biochemical Journal, 35(4), 488-494. https://doi.org/10.1042/bj0350488.
      Lasik-Kurdys, M., Majcher, M., & Nowak, J. (2018). Effects of different techniques of malolactic fermentation induction on diacetyl metabolism and biosynthesis of selected aromatic esters in cool- climate grape wines. Molecules, 23(10), 2549. https://doi.org/10.3390/molecules23102549.
      Laurie, V. F., & Waterhouse, A. L. (2006). Oxidation of glycerol in the presence of hydrogen peroxide and iron in model solutions and wine. Potential effects on wine color. Journal of Agricultural and Food Chemistry, 54(13), 4668-4673. https://doi.org/10.1021/jf053036p.
      Lebiedzińska, A., Marszałł, M. L., Kuta, J., & Szefer, P. (2007). Reversed-phase high-performance liquid chromatography method with coulometric electrochemical and ultraviolet detection for the quantification of vitamins B1 (thiamine), B6 (pyridoxamine, pyridoxal and pyridoxine) and B12 in animal and plant foods. Journal of Chromatography A, 1173(1-2), 71-80. https://doi.org/10.1016/j.chroma.2007.09.072.
      Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2005). Lehninger principles of biochemistry. Macmillan.
      Leichter, J., & Joslyn, M. A. (1969). Kinetics of thiamin cleavage by sulphite. The Biochemical Journal, 113(4), 611-615. https://doi.org/10.1042/bj1130611.
      Leonardi, R., & Jackowski, S. (2007). Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus, 2(2), 1-28. https://doi.org/10.1128/ecosalplus.3.6.3.4.
      Lin, H.-J., Chen, C.-W., Hwang, B.-S., & Choong, Y.-M. (2000). A rapid and simple gas chromatographic method for direct determination of nicotinamide in commercial vitamins and tonic drinks. Journal of Food and Drug Analysis, 8(2), 113-123.
      Lin, S. J., & Guarente, L. (2003). Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Current Opinion in Cell Biology, 15(2), 241-246. https://doi.org/10.1016/S0955-0674(03)00006-1.
      Liu, C., Yang, S. X., & Deng, L. (2015). Determination of internal qualities of Newhall navel oranges based on NIR spectroscopy using machine learning. Journal of Food Engineering, 161, 16-23. https://doi.org/10.1016/j.jfoodeng.2015.03.022.
      Liu, S., Hu, W., Wang, Z., & Chen, T. (2020). Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 19(1), 1-16. https://doi.org/10.1186/s12934-020-01302-7.
      Llorente, B., & Dujon, B. (2000). Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Letters, 475(3), 237-241. https://doi.org/10.1016/S0014-5793(00)01698-7.
      Loewus, F. (1999). Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry, 52(2), 193-210. https://doi.org/10.1016/S0031-9422(99)00145-4.
      López-Malo, M., García-Rios, E., Melgar, B., Sanchez, M. R., Dunham, M. J., & Guillamón, J. M. (2015). Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation. BMC Genomics, 16(1), 1-15. https://doi.org/10.1186/s12864-015-1755-2.
      Loubbardi, A., Marcireau, C., Karst, F., & Guilloton, M. (1995). Sterol uptake induced by an impairment of pyridoxal phosphate synthesis in Saccharomyces cerevisiae: Cloning and sequencing of the PDX3 gene encoding pyridoxine (Pyridoxamine) phosphate oxidase. Journal of Bacteriology, 177(7), 1817-1823. https://doi.org/10.1128/jb.177.7.1817-1823.1995.
      Lowe, C. R. (1984). Biosensors. Trends in Biotechnology, 2(3), 59-65. https://doi.org/10.1016/0167-7799(84)90011-8.
      Lu, B., Ren, Y., Huang, B., Liao, W., Cai, Z., & Tie, X. (2008). Simultaneous determination of four water-soluble vitamins in fortified infant foods by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Journal of Chromatographic Science, 46(3), 225-232. https://doi.org/10.1093/chromsci/46.3.225.
      Lumley, I. D. (1993). Vitamin analysis in foods. In P. B. Ottaway (Ed.), The technology of vitamins in food (pp. 172-232). Springer US. https://doi.org/10.1007/978-1-4615-2131-0_8.
      Lussier, M., White, A. M., Sheraton, J., Di Paolo, T., Treadwell, J., Southard, S. B., Horenstein, C. I., Chen-Weiner, J., Ram, A. F. J., Kapteyn, J. C., Roemer, T. W., Vo, D. H., Bondoc, D. C., Hall, J., Wei Zhong, W., Sdicu, A. M., Davies, J., Klis, F. M., Robbins, P. W., & Bussey, H. (1997). Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics, 147(2), 435-450.
      Ma, T., Wang, J., Wang, H., Lan, T., Liu, R., Gao, T., Yang, W., Zhou, Y., Ge, Q., Fang, T., & Sun, X. (2020). Is overnight fresh juice drinkable? The shelf life prediction of non-industrial fresh watermelon juice based on the nutritional quality, microbial safety quality, and sensory quality. Food & Nutrition Research, 64, 1-15. https://doi.org/10.29219/fnr.v64.4237.
      Magwaza, L. S., Opara, U. L., Cronje, P. J. R., Landahl, S., Nieuwoudt, H. H., Mouazen, A. M., Nicolaï, B. M., & Terry, L. A. (2014). Assessment of rind quality of “Nules Clementine” mandarin fruit during postharvest storage: 2. Robust Vis/NIRS PLS models for prediction of physico-chemical attributes. Scientia Horticulturae, 165, 421-432. https://doi.org/10.1016/j.scienta.2013.09.050.
      Magwaza, L. S., Opara, U. L., Terry, L. A., Landahl, S., Cronje, P. J., Nieuwoudt, H., Mouazen, A. M., Saeys, W., & Nicolaï, B. M. (2012). Prediction of “Nules Clementine” mandarin susceptibility to rind breakdown disorder using Vis/NIR spectroscopy. Postharvest Biology and Technology, 74, 1-10. https://doi.org/10.1016/j.postharvbio.2012.06.007.
      Majerus, P., Connolly, T., Deckmyn, H., Ross, T., Bross, T., Ishii, H., Bansal, V., & Wilson, D. (1986). The metabolism of phosphoinositide-derived messenger molecules. Science, 234(4783), 1519-1526. https://doi.org/10.1126/science.3024320.
      Makaga-Kabinda-Massard, E., & Maujean, A. (1994). Dosage simultané de l'anhydride sulfureux et de l'acide ascorbique dans les vins de Champagne par C.L.H.P. avec détection électrochimique. Etude de l'interaction acide ascorbique-anhydride sulfureux; Simultaneous dosage of sulphur dioxide and ascorbic aci. Bulletin de l'OIV, 67(763-64), 753-767.
      Marshall, P. A., Trenerry, V. C., & Thompson, C. O. (1995). The determination of total ascorbic acid in beers, wines, and fruit drinks by micellar electrokinetic capillary chromatography. Journal of Chromatographic Science, 33(8), 426-432. https://doi.org/10.1093/chromsci/33.8.426.
      Martín-Yerga, D., Carrasco-Rodríguez, J., García Alonso, F. J., & Costa-García, A. (2017). Competitive electrochemical biosensing of biotin using cadmium-modified titanium phosphate nanoparticles and 8-channel screen-printed disposable electrodes. Analytical Methods, 9(26), 3983-3991. https://doi.org/10.1039/c7ay00947j.
      Matthews, J. (1959). The vitamin B-complex content of bottled Swiss grape juices. Vitis: Journal of Grapevine Research, 2, 57-64.
      Mihara, H., Kurihara, T., Yoshimura, T., Soda, K., & Esaki, N. (1997). Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. Journal of Biological Chemistry, 272(36), 22417-22424. https://doi.org/10.1074/jbc.272.36.22417.
      Mihhalevski, A., Nisamedtinov, I., Hälvin, K., Ošeka, A., & Paalme, T. (2013). Stability of B-complex vitamins and dietary fiber during rye sourdough bread production. Journal of Cereal Science, 57(1), 30-38. https://doi.org/10.1016/j.jcs.2012.09.007.
      Moio, L., Chambellant, E., Lesschaeve, I., Issanchou, S. N., Schlich, P., & Etivant, P. X. (1995). Production of representative wine extracts for chemical and olfactory analysis. Italian Journal of Food Science, 7(3), 265-278.
      Mojzita, D., & Hohmann, S. (2006). Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Molecular Genetics and Genomics, 276(2), 147-161. https://doi.org/10.1007/s00438-006-0130-z.
      Monk, P. R., & Cowley, J. (1984). Effect of nicotinic acid and sugar concentration of grape juice and temperature on accumulation of acetic acid during yeast fermentation. Journal of Fermentation Technology, 62(6), 515-521.
      Mooney, B. P., Miernyk, J. A., & Randall, D. D. (2002). The complex fate of α-ketoacids. Annual Review of Plant Biology, 53, 357-375. https://doi.org/10.1146/annurev.arplant.53.100301.135251.
      Moreno, J., & Peinado, R. (2012). Enological chemistry. Academic Press.
      Morris, C. P., Lim, F., & Wallace, J. C. (1987). Yeast pyruvate carboxylase: Gene isolation. Biochemical and Biophysical Research Communications, 145(1), 390-396.
      Morris, H. C., Finglas, P. M., Faulks, R. M., & Morgan, M. R. A. (1988). Development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of pantothenic acid and analogues. I. Production of antibodies and establishment of ELISA systems. Journal of Micronutrient Analysis, 4(1), 33-45.
      Mostafa, G. A. E. (2003). Potentiometric membrane sensors for the selective determination of pyridoxine hydrochloride (vitamin B6) in some pharmaceutical formulations. Journal of Analytical Chemistry, 58(11), 1073-1077. https://doi.org/10.1023/A:1027389507393.
      Muller, E. H., Richards, E. J., Norbeck, J., Byrne, K. L., Karlsson, K. A., Pretorius, G. H. J., Meacock, P. A., Blomberg, A., & Hohmann, S. (1999). Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Letters, 449(2-3), 245-250. https://doi.org/10.1016/S0014-5793(99)00449-4.
      Müller, I. B., Bergmann, B., Groves, M. R., Couto, I., Amaral, L., Begley, T. P., Walter, R. D., & Wrenger, C. (2009). The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS One, 4(11), e7656. https://doi.org/10.1371/journal.pone.0007656.
      Müller, N. (2014). Thiaminpyrophosphat - Ein natürlich vorkommendes Iminium-Salz. Seine Bedeutung für die mikrobiellen Prozesse bei der Weinbereitung und die Aromabildung im Wein. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 69(5), 489-500. https://doi.org/10.5560/ZNB.2014-4052.
      Müller, N. (2018). Iminiumsalz-Strukturen bei der durch Pyridoxalphosphat (Vitamin B6) katalysierten Bildung von Aromastoffen und Fehlaromen im Wein. Zeitschrift Für Naturforschung B, 73(7), 521-533. https://doi.org/10.1515/znb-2018-0038.
      Murray, M., & Greenberg, M. L. (2000). Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Molecular Microbiology, 36(3), 651-661. https://doi.org/10.1046/j.1365-2958.2000.01886.x.
      Nakamura, I., Isobe, N., Kamihara, T., & Fukui, S. (1980). Effects of thiamine and pyridoxine on respiratory activity in Saccharomyces carlsbergensis strain 4228. Archives of Microbiology, 127(1), 47-51. https://doi.org/10.1007/BF00414354.
      National Center for Biotechnology Information. (2020). PubChem Compound Summary for CID 192767, Nicotine blue. National Library of Medicine.
      Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46(2), 99-118. https://doi.org/10.1016/j.postharvbio.2007.06.024.
      Nie, T., Xu, J.-K., Lu, L.-M., Zhang, K.-X., Bai, L., & Wen, Y.-P. (2013). Electroactive species-doped poly(3,4-ethylenedioxythiophene) films: Enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C. Biosensors and Bioelectronics, 50, 244-250. https://doi.org/10.1016/j.bios.2013.06.057.
      Nie, T., Zhang, K.-X., Xu, J.-K., Lu, L.-M., & Bai, L. (2014). A facile one-pot strategy for the electrochemical synthesis of poly(3,4-ethylenedioxythiophene)/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. Journal of Electroanalytical Chemistry, 717-718, 1-9. https://doi.org/10.1016/j.jelechem.2014.01.006.
      Nikawa, J. I., Tsukagoshi, Y., & Yamashita, S. (1991). Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. Journal of Biological Chemistry, 266(17), 11184-11191.
      Nishimura, H., Kawasaki, Y., Nosaka, K., & Kaneko, Y. (1997). Mutation thi81 causing a deficiency in the signal transduction of thiamine pyrophosphate in Saccharomyces cerevisiae. FEMS Microbiology Letters, 156(2), 245-249. https://doi.org/10.1016/S0378-1097(97)00432-1.
      Nishimura, H., Kawasaki, Y., Nosaka, K., Kaneko, Y., & Iwashima, A. (1991). A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae. Journal of Bacteriology, 173(8), 2716-2719. https://doi.org/10.1128/jb.173.8.2716-2719.1991.
      Nollet, L. M. L. (2000). Food analysis by HPLC (2nd ed.). Taylor & Francis. https://books.google.fr/books?id=1c9dq_10r4IC.
      Nosaka, K., Onozuka, M., Konno, H., Kawasaki, Y., Nishimura, H., Sano, M., & Akaji, K. (2005). Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae. Molecular Microbiology, 58(2), 467-479. https://doi.org/10.1111/j.1365-2958.2005.04835.x.
      Nùñez-Vergara, L. J., Squella, J., Sturm, J., Baez, H., & Camargo, C. (2001). Simultaneous determination of melatonin and pyridoxine in tablets by gas chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 26(5-6), 929-938. https://doi.org/10.1016/S0731-7085(01)00447-2.
      Nykanen, L., Nykanen, I., & Suomalainen, H. (1977). Distribution of esters produced during sugar fermentation between the yeast cell and the medium. Journal of the Institute of Brewing, 83, 32-34.
      O'Connor-Cox, E. S. C., Paik, J., & Ingledew, W. M. (1991). Improved ethanol yields through supplementation with excess assimilable nitrogen. Journal of Industrial Microbiology, 8(1), 45-52. https://doi.org/10.1007/BF01575590.
      Obsorne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis. Longman Scientific & Technical.
      Ohsugi, M., & Imanishi, Y. (1985). Activity of biotin vitamers. Journal of Nutritional Science and Vitaminology, 31(15), 563-572.
      Oliveira, C. M., Ferreira, A. C. S., De Freitas, V., & Silva, A. M. S. (2011). Oxidation mechanisms occurring in wines. Food Research International, 44(5), 1115-1126. https://doi.org/10.1016/j.foodres.2011.03.050.
      Ong, C. P., Ng, C. L., Lee, H. K., & Li, S. F. Y. (1991). Separation of water- and fat-soluble vitamins by micellar electrokinetic chromatography. Journal of Chromatography A, 547(C), 419-428. https://doi.org/10.1016/S0021-9673(01)88665-9.
      Organisation Internationale de la Vigne et du Vin. (2020). Code international des pratiques oenologiques. Organisation Internationale de la Vigne et du Vin.
      Ouameur, A. (2011). Caractérisation de la famille des transporteurs de folate et de la bioptérine (FBT) chez le parasite protozoaire Leishmania. Université Laval.
      Ough, C. S., Davenport, M. A., & Joseph, K. (1989). Effects of certain vitamins on growth and fermentation rate of several commercial active dry wine yeasts. American Journal of Enology and Viticulture, 40(3), 208-213. http://www.ajevonline.org/content/40/3/208.abstract.
      Ough, C. S., & Kunkee, R. E. (1967). Effects of acid additions to grape juice on fermentation rates and wine qualities. American Journal of Enology and Viticulture, 18(1), 11-17. http://www.ajevonline.org/content/18/1/11.abstract.
      Ough, C. S., & Kunkee, R. E. (1968). Fermentation rates of grape juice: V. Biotin content of juice and its effect on alcoholic fermentation rate. Applied Microbiology, 16(4), 572-576. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=547471%26tool=pmcentrez%26rendertype=abstract.
      Ournac, A. (1966). Evolution of ascorbic acid during alcoholic fermentation of fresh and desulphited grape juice and storing of corresponding wines. Annales de Technologie Agricole, 15(2), 181.
      Ournac, A. (1970). Les vitamines du vin. Annales de La Nutrition et de l'Alimentation, 24, B333-B365.
      Ournac, A., & Flanzy, M. (1967). The increase in vitamin B1 in wine stored with its lees. Annales de Technologie Agricole, 16(1), 41-54. https://eurekamag.com/research/025/819/025819918.php.
      Paalme, T., Kevvai, K., Vilbaste, A., Hälvin, K., & Nisamedtinov, I. (2014). Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture. World Journal of Microbiology and Biotechnology, 30(9), 2351-2359. https://doi.org/10.1007/s11274-014-1660-x.
      Palm, D., Klein, H. W., Schinzel, R., Buehner, M., & Helmreich, E. J. M. (1990). The role of pyridoxal 5′-phosphate in glycogen phosphorylase catalysis. Biochemistry, 29(5), 1099-1107. https://doi.org/10.1021/bi00457a001.
      Panagopoulou, E. A., Chiou, A., & Karathanos, V. T. (2019). Water-soluble vitamin content of sun-dried Corinthian raisins (Vitis vinifera L., var. Apyrena). Journal of the Science of Food and Agriculture, 99(12), 5327-5333. https://doi.org/10.1002/jsfa.9771.
      Panahi, H. A., Kalal, H. S., & Rahimi, A. (2008). Separation of vitamin B2 and B12 by impregnate HPTLC plates with boric acid. International Science Index, 2(6), 193-195. http://waset.org/publications/6116/separation-of-vitamin-b2-and-b12-byimpregnate-hptlc-plates-with-boric-acid.
      Panozzo, C., Nawara, M., Suski, C., Kucharczyka, R., Skoneczny, M., Bécam, A.-M., Rytka, J., & Herbert, C. J. (2002). Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Letters, 517(1-3), 97-102. https://doi.org/10.1016/S0014-5793(02)02585-1.
      Patton-Vogt, J. L., & Henry, S. A. (1998). GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae. Genetics, 149(4), 1707-1715.
      Peng, Z., Duncan, B., Pocock, K. F., & Sefton, M. A. (1998). The effect of ascorbic acid on oxidative browning of white wines and model wines. Australian Journal of Grape and Wine Research, 4(3), 127-135. https://doi.org/10.1111/j.1755-0238.1998.tb00141.x.
      Perli, T., Wronska, A. K., Ortiz-Merino, R. A., Pronk, J. T., & Daran, J. M. (2020). Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast, 37(4), 283-304. https://doi.org/10.1002/yea.3461.
      Perlman, L., & Morgan, A. F. (1945). Stability of B vitamins in grape juices and wines. Journal of Food Science, 10(4), 334-341. https://doi.org/10.1111/j.1365-2621.1945.tb16176.x.
      Peynaud, E. (1956). New information concerning biological degradation of acids. American Journal of Enology and Viticulture, 7(4), 150-156. http://www.ajevonline.org/content/7/4/150.abstract.
      Peynaud, E. (1984). Knowing and making wine. Wiley.
      Peynaud, E., & Lafourcade, S. (1955). L'acide pantothénique dans les raisins et dans les vins de Bordeaux. Industries Agricoles et Alimentaires, 72, 575.
      Peynaud, E., & Lafourcade, S. (1958). Évolution des vitamines B dans le raisin. Qualitas Plantarum et Materiae Vegetabiles, 3-4(1), 405-414. https://doi.org/10.1007/BF01884069.
      Phalip, V., Kuhn, I., Lemoine, Y., & Jeltsch, J. M. (1999). Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BI05, a novel gene involved in vitamer uptake. Gene, 232(1), 43-51. https://doi.org/10.1016/S0378-1119(99)00117-1.
      Pisoschi, A. M., Pop, A., Negulescu, G. P., & Pisoschi, A. (2011). Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at pt and carbon paste electrodes. Molecules, 16(2), 1349-1365. https://doi.org/10.3390/molecules16021349.
      Polese, D., Convertino, A., Maiolo, L., Ferrone, A., Pazzini, L., Marrani, M., Maita, F., Pecora, A., Fortunato, G., & Fiaschi, G. (2014). Investigation on nanostructured biosensor for Biotin detection. Proceedings of IEEE Sensors, Valencia, Spain, pp. 1627-1630. https://doi.org/10.1109/ICSENS.2014.6985331.
      Ponder, E. L., Fried, B., & Sherma, J. (2004). Thin-layer chromatographic analysis of hydrophilic vitamins in standards and from Helisoma trivolvis snails. Acta Chromatographica, (14), 70-81.
      Primerano, D. A., & Burns, R. O. (1982). Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium. Journal of Bacteriology, 150(3), 1202-1211. https://doi.org/10.1128/jb.150.3.1202-1211.1982.
      Radler, F. (1957). Der Vitamingehalt der Moste verschiedener Rebenarten und -sorten. Experientia, 13(8), 318-318. https://doi.org/10.1007/BF02296817.
      Radler, F. (1993). Yeasts-metabolism of organic acids. G. H. Fleet (Ed.). Wine microbiology and biotechnology (pp. 165-182). Harwood Academic.
      Rajaram, R., Kiruba, M., Suresh, C., Mathiyarasu, J., Kumaran, S., & Kumaresan, R. (2020). Amperometric determination of Myo-inositol using a glassy carbon electrode modified with nanostructured copper sulfide. Microchimica Acta, 187, 334. https://doi.org/10.1007/s00604-020-04300-z.
      Rapp, A., & Mandery, H. (1986). Wine aroma. Experientia, 42(8), 873-884. https://doi.org/10.1007/BF01941764.
      Raschle, T., Amrhein, N., & Fitzpatrick, T. B. (2005). On the two components of pyridoxal 5′-phosphate synthase from Bacillus subtilis. Journal of Biological Chemistry, 280(37), 32291-32300. https://doi.org/10.1074/jbc.M501356200.
      Ravi, G., & Venkatesh, Y. P. (2017). Immunoassays for riboflavin and flavin mononucleotide using antibodies specific to D-ribitol and D-ribitol-5-phosphate. Journal of Immunological Methods, 445, 59-66. https://doi.org/10.1016/j.jim.2017.03.010.
      Reihl, P., & Stolz, J. (2005). The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. Journal of Biological Chemistry, 280(48), 39809-39817. https://doi.org/10.1074/jbc.M505002200.
      Renault, P., Coulon, J., de Revel, G., Barbe, J. C., & Bely, M. (2015). Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. International Journal of Food Microbiology, 207, 40-48. https://doi.org/10.1016/j.ijfoodmicro.2015.04.037.
      Revin, S. B., & John, S. A. (2012). Simultaneous determination of vitamins B2, B9 and C using a heterocyclic conducting polymer modified electrode. Electrochimica Acta, 75(1), 35-41. https://doi.org/10.1016/j.electacta.2012.04.056.
      Ribéreau-Gayon, J., Peynaud, E., & Lafon, M. (1956). Investigations on the origin of secondary products of alcoholic fermentation. American Journal of Enology and Viticulture, 7(3), 112 LP -118. http://www.ajevonline.org/content/7/3/112.abstract.
      Ribéreau-Gayon, J., Peynaud, E., Ribéreau-Gayon, P., & Sudraud, P. (1975). Sciences et techniques du vin, Vol. 2: Caractères des vins, maturation du raisin, levures et bactéries. Dunod.
      Ribéreau-Gayon, J., Peynaud, E., Ribéreau-Gayon, P., & Sudraud, P. (1977). Sciences et techniques du vin, Vol. 4: Clarification et stabilisation, materiels et installations. Dunod.
      Ribéreau-Gayon, J., Peynaud, E., Sudraud, P., & Ribéreau-Gayon, P. (1975). Sciences et techniques du vin. Dunod.
      Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). Handbook of enology: The chemistry of wine stabilization and treatments (2nd ed., Vol. 2). John Wiley & Sons. https://doi.org/10.1002/0470010398.
      Rizzolo, A., Baldo, C., & Polesello, A. (1991). Application of high-performance liquid chromatography to the analysis of niacin and biotin in Italian almond cultivars. Journal of Chromatography A, 553(C), 187-192. https://doi.org/10.1016/S0021-9673(01)88487-9.
      Rizzolo, A., & Polesello, S. (1992). Chromatographic determination of vitamins in foods. Journal of Chromatography A, 624(1-2), 103-152. https://doi.org/10.1016/0021-9673(92)85676-K.
      Rogers, T. O., & Lichstein, H. C. (1969a). Characterization of the biotin transport system in Saccharomyces cerevisiae. Journal of Bacteriology, 100(2), 557-564. https://doi.org/10.1128/jb.100.2.557-564.1969.
      Rogers, T. O., & Lichstein, H. C. (1969b). Regulation of biotin transport in Saccharomyces cerevisiae. Journal of Biotechnology, 100(2), 565-572.
      Rossi, M., Raimondi, S., Costantino, L., & Amaretti, A. (2016). Folate: Relevance of chemical and microbial production. In E. J. Vandamme & J. L. Revuelta (Eds.), Industrial biotechnology of vitamins, biopigments, and antioxidants (pp. 103-128). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527681754.ch5.
      Rudenko, A. O., & Kartsova, L. A. (2010). Determination of water-soluble vitamin B and vitamin C in combined feed, premixes, and biologically active supplements by reversed-phase HPLC. Journal of Analytical Chemistry, 65(1), 71-76. https://doi.org/10.1134/S1061934810010132.
      Rusche, L. N., Kirchmaier, A. L., & Rine, J. (2003). The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annual Review of Biochemistry, 72, 481-516. https://doi.org/10.1146/annurev.biochem.72.121801.161547.
      Sablayrolles, J. M., & Salmon, J. M. (2001). Vitamins: Importance in alcoholic fermentation. Lallemand Research Meeting.
      Sami, R., Li, Y., Qi, B., Wang, S., Zhang, Q., Han, F., Ma, Y., Jing, J., & Jiang, L. (2014). HPLC analysis of water-soluble vitamins (B2, B3, B6, B12, and C) and fat-soluble vitamins (E, K, D, A, and β-carotene) of okra (Abelmoschus esculentus). Journal of Chemistry, 2014, 831357. https://doi.org/10.1155/2014/831357.
      San José Rodriguez, R., Fernández-Ruiz, V., Cámara, M., & Sánchez-Mata, M. C. (2012). Simultaneous determination of vitamin B 1 and B 2 in complex cereal foods, by reverse phase isocratic HPLC-UV. Journal of Cereal Science, 55(3), 293-299. https://doi.org/10.1016/j.jcs.2011.12.011.
      Sánchez, J. M., & Salvadó, V. (2002). Comparison of micellar and microemulsion electrokinetic chromatography for the analysis of water- and fat-soluble vitamins. Journal of Chromatography A, 950(1-2), 241-247. https://doi.org/10.1016/S0021-9673(02)00026-2.
      Santos, J., Mendiola, J. A., Oliveira, M. B. P. P., Ibáñez, E., & Herrero, M. (2012). Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage. Journal of Chromatography A, 1261, 179-188. https://doi.org/10.1016/j.chroma.2012.04.067.
      Santos, M. A., Garcia-Ramirez, J. J., & Revuelta, J. L. (1995). Riboflavin biosynthesis in Saccharomyces cerevisiae. Cloning, characterization, and expression of the RIB5 gene encoding riboflavin synthase. Journal of Biological Chemistry, 270(1), 437-444. https://doi.org/10.1074/jbc.270.1.437.
      Santos, M. A., Jimenez, A., & Revuelta, J. L. (2000). Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 275(37), 28618-28624. https://doi.org/10.1074/jbc.M004621200.
      Sasaki, K., Hatate, H., & Tanaka, R. (2020). Determination of 13 vitamin B and the related compounds using HPLC with UV detection and application to food supplements. Chromatographia, 83(7), 839-851. https://doi.org/10.1007/s10337-020-03902-2.
      Schanderl, H. (1950). Die Mikrobiologie des Weines (Vol., 2). Eugen Ulmer.
      Schieberle, P., Ofner, S., & Grosch, W. (1990). Evaluation of potent odorants in cucumbers (Cucumis sativus) and muskmelons (Cucumis melo) by aroma extract dilution analysis. Journal of Food Science, 55(1), 193-195. https://doi.org/10.1111/j.1365-2621.1990.tb06050.x.
      Schwartz, H., & Radler, F. (1988). Formation of L(-)malate by Saccharomyces cerevisiae during fermentation. Applied Microbiology and Biotechnology, 27(5-6), 553-560. https://doi.org/10.1007/BF00451631.
      Shinohara, T., Oshida, A., Yanagida, F., & Goto, S. (1996). Vitamin requirements of wine yeasts and influence of growth temperature. Journal of the Institute of Enology and Viticulture, 31, 1-8.
      Simpson, R. F., Bennett, S. B., & Miller, G. C. (1983). Oxidative pinking of white wines: A note on the influence of sulphur dioxide and ascorbic acid. Food Technology in Australia, 35(1), 34-36.
      Singleton, C. K. (1997). Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene, 199(1-2), 111-121. https://doi.org/10.1016/S0378-1119(97)00354-5.
      Skouroumounis, G. K., Kwiatkowski, M. J., Francis, I. L., Oakey, H., Capone, D. L., Peng, Z., Duncan, B., Sefton, M. A., & Waters, E. J. (2005). The influence of ascorbic acid on the composition, colour and flavour properties of a Riesling and a wooded Chardonnay wine during five years’ storage. Australian Journal of Grape and Wine Research, 11(3), 355-368. https://doi.org/10.1111/j.1755-0238.2005.tb00035.x.
      Spayd, S. E., & Andersen-Bagge, J. (1996). Free amino acid composition of grape juice from 12 Vitis vinifera cultivars in Washington. American Journal of Enology and Viticulture, 47(4), 389 LP -402. http://www.ajevonline.org/content/47/4/389.abstract.
      Spitzner, A., Perzlmaier, A. F., Geillinger, K. E., Reihl, P., & Stolz, J. (2008). The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae. Genetics, 180(4), 2007-2017. https://doi.org/10.1534/genetics.108.094458.
      Stolz, J., Hoja, U., Meier, S., Sauer, N., & Schweizer, E. (1999). Identification of the plasma membrane H+-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant. Journal of Biological Chemistry, 274(26), 18741-18746. https://doi.org/10.1074/jbc.274.26.18741.
      Stolz, J., & Sauer, N. (1999). The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter. Journal of Biological Chemistry, 274(26), 18747-18752. https://doi.org/10.1074/jbc.274.26.18747.
      Stolz, J., & Vielreicher, M. (2003). Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cerevisiae. Journal of Biological Chemistry, 278(21), 18990-18996. https://doi.org/10.1074/jbc.M300949200.
      Streit, W. R., & Entcheva, P. (2003). Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Applied Microbiology and Biotechnology, 61(1), 21-31. https://doi.org/10.1007/s00253-002-1186-2.
      Suomalainen, H. (1971). Yeast and its effect on the flavour of alcoholic beverages. Journal of the Institute of Brewing, 77(2), 164-177. https://doi.org/10.1002/j.2050-0416.1971.tb03370.x.
      Suomalainen, H., & Lehtonen, M. (1979). The production of aroma compounds by yeast. Journal of the Institute of Brewing, 85(3), 149-156. https://doi.org/10.1002/j.2050-0416.1979.tb06846.x.
      Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., & Pretorius, I. S. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, 11(2), 139-173. https://doi.org/10.1111/j.1755-0238.2005.tb00285.x.
      Swiegers, J. H., & Pretorius, I. S. (2005). Yeast modulation of wine flavor. Advances in Applied Microbiology, 57(SUPPL. A), 131-175. https://doi.org/10.1016/S0065-2164(05)57005-9.
      Tahir, H. E., & Xiaobo, Z. (2019). Recent progress in rapid analyses of vitamins, phenolic, and volatile compounds in foods using vibrational spectroscopy combined with chemometrics: A review. Food Analytical Methods, 12, 2361-2382.
      Tamer, I. M., Özilgen, M., & Ungan, S. (1988). Kinetics of riboflavin production by Brewers’ yeasts. Enzyme and Microbial Technology, 10(12), 754-756. https://doi.org/10.1016/0141-0229(88)90121-4.
      Tanaka, A., Iijima, M., Kikuchi, Y., Hoshino, J., & Nose, N. (1989). Gas chromatographic determination of nicotinamide in meats and meat products as 3-cyanopyridine. Journal of Chromatography A, 466, 307-317. https://doi.org/10.1016/S0021-9673(01)84626-4.
      Trevelyan, W. E., & Harrison, J. S. (1954). Studies on Yeast Metabolism 4. The effect of thiamine on yeast fermentation. Biochemical Journal, 57(4), 561-566.
      Tuite, M. F., & Oliver, S. G. (1991). Saccharomyces. Springer. https://doi.org/10.1007/978-1-4899-2641-8.
      Urgessa, B. (2008). HPTLC-densitometric determination of some water soluble vitamins present in pharmaceuticals. Addis Ababa University.
      Uscanga, M. G. A., Delia, M. L., & Strehaiano, P. (2000). Nutritional requirements of Brettanomyces bruxellensis: Growth and physiology in batch and chemostat cultures. Canadian Journal of Microbiology, 46(11), 1046-1050. https://doi.org/10.1139/cjm-46-11-1046.
      Van Winkle, L. J. (1985). A summary of amino acid metabolism based on amino acid structure. Biochemical Education, 13(1), 25-26. https://doi.org/10.1016/0307-4412(85)90123-2.
      Vaze, V. D., & Srivastava, A. K. (2008). Determination of pyridoxine hydrochloride in pharmaceutical preparations by calixarene based potentiometric sensor. Journal of Pharmaceutical and Biomedical Analysis, 47(1), 177-182. https://doi.org/10.1016/j.jpba.2007.12.030.
      Voet, D., Voet, J. G., & Pratt, C. W. (2006). Fundamentals of biochemistry: Life at the molecular level (5th ed.). Wiley. Retrieved from https://books.google.fr/books?id=9T7hCgAAQBAJ.
      Von Cosmos, N. H., & Edwards, C. G. (2016). Use of nutritional requirements for Brettanomyces bruxellensis to limit infections in wine. Fermentation, 2(3), 17. https://doi.org/10.3390/fermentation2030017.
      Wainwright, T. (1970). Hydrogen sulphide production by yeast under conditions of methionine, pantothenate or vitamin b6 deficiency. Journal of General Microbiology, 61(1), 107-119. https://doi.org/10.1099/00221287-61-1-107.
      Wainwright, T. (1971). Production of H2S by yeasts: Role of nutrients. Journal of Applied Microbiology, 34(1), 161-171.
      Wakil, S. J., Titchener, E. B., & Gibson, D. M. (1958). Evidence for the participation of biotin in the enzymic synthesis of fatty acids. BBA - Biochimica et Biophysica Acta, 29(1), 225-226. https://doi.org/10.1016/0006-3002(58)90177-X.
      Wang, X. D., Bohlscheid, J. C., & Edwards, C. G. (2003). Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. Journal of Applied Microbiology, 94(3), 349-359. https://doi.org/10.1046/j.1365-2672.2003.01827.x.
      Ward, C. M., Trenerry, V. C., & Pant, I. (1997). The application of capillary electrophoresis to the determination of total niacin in concentrated yeast spreads. Food Chemistry, 58(3), 185-192. https://doi.org/10.1016/S0308-8146(96)00241-5.
      Waterhouse, A. L., & Laurie, V. F. (2006). Oxidation of wine phenolics: A critical evaluation and hypotheses. American Journal of Enology and Viticulture, 57(3), 306-313. http://www.ajevonline.org/content/57/3/306%5Cnhttp://www.ajevonline.org/content/57/3/306.full.pdf.
      Waterhouse, A. L., Sacks, G. L., & Jeffery, D. W. (2016). Understanding wine chemistry. John Wiley & Sons.
      Watson, H. (2015). Biological membranes. Essays in Biochemistry, 59, 43-70. https://doi.org/10.1042/BSE0590043.
      Whiting, G. C. (1976). Organic acid metabolism of yeasts during fermentation of alcoholic beverages-A review. Journal of the Institute of Brewing, 82(2), 84-92. https://doi.org/10.1002/j.2050-0416.1976.tb03731.x.
      Whitney, P. A., Cooper, T. G., & Magasanik, B. (1973). The induction of urea carboxylase and allophanate hydrolase in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 248(17), 6203-6209.
      Wierman, M. B., & Smith, J. S. (2014). Yeast sirtuins and the regulation of aging. FEMS Yeast Research, 14(1), 73-88. https://doi.org/10.1111/1567-1364.12115.
      Williams, R. J. (1941). Growth-promoting nutrilites for yeasts. Biological Reviews, 16(1), 49-80. https://doi.org/10.1111/j.1469-185X.1941.tb01095.x.
      Wojciechowski, C., Dupuy, N., Ta, C. D., Huvenne, J. P., & Legrand, P. (1998). Quantitative analysis of water-soluble vitamins by ATR-FTIR spectroscopy. Food Chemistry, 63(1), 133-140. https://doi.org/10.1016/S0308-8146(97)00138-6.
      Wolak, N., Kowalska, E., Kozik, A., & Rapala-kozik, M. (2014). Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast, 14, 1249-1262. https://doi.org/10.1111/1567-1364.12218.
      Wu, M., Repetto, B., Glerum, D. M., & Tzagoloff, A. (1995). Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae. Molecular and Cellular Biology, 15(1), 264-271. https://doi.org/10.1128/mcb.15.1.264.
      Xiao, X., Hou, Y., Du, J., Sun, D., Bai, G., & Luo, G. (2012). Determination of vitamins B2, B3, B6 and B7 in corn steep liquor by NIR and PLSR. Transactions of Tianjin University, 18, 372-377.
      Xing, H. (2007). Impact of thiamine and pyridoxine on alcoholic fermentations of synthetic grape juice. Washington State University.
      Yang, H., & Irudayaraj, J. (2002). Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques. Journal of Pharmacy and Pharmacology, 54(9), 1247-1255. https://doi.org/10.1211/002235702320402099.
      Yang, Y., Zhao, Q., Wang, Z., & Yang, M. (2006). Amperometric determination of inositol based on electrocatalytic oxidation on a glass carbon electrode modified by nickel hexacyanoferrate films. Analytical Letters, 39(2), 361-372. https://doi.org/10.1080/00032710500477118.
      Yin, C., Cao, Y., Ding, S., & Wang, Y. (2008). Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography. Journal of Chromatography A, 1193(1-2), 172-177. https://doi.org/10.1016/j.chroma.2008.04.016.
      Zeidler, J., Sayer, B. G., & Spenser, I. D. (2003). Biosynthesis of vitamin B1 in yeast. derivation of the pyrimidine unit from pyridoxine and histidine. intermediacy of urocanic acid. Journal of the American Chemical Society, 125(43), 13094-13105. https://doi.org/10.1021/ja030261j.
      Zempleni, J., Rucker, R. B., McCormick, D. B., & Suttie, J. W. (2006). Handbook of vitamins (4th ed.). CRC Press.
      Zeng, L., Jiang, W., Liu, L., Song, S., & Kuang, H. (2018). Development of ic-ELISA and lateral-flow immunochromatographic strip for detection of vitamin B2 in an energy drink and vitamin tablets. Food and Agricultural Immunology, 29(1), 121-132. https://doi.org/10.1080/09540105.2017.1360257.
      Zhang, Y., Zhou, W. E., Yan, J. Q., Liu, M., Zhou, Y., Shen, X., Ma, Y.-l., Feng, X.-s., Yang, J., & Li, G. H. (2018). A review of the extraction and determination methods of thirteen essential vitamins to the human body: An update from 2010. Molecules, 23(6), 1-25. https://doi.org/10.3390/molecules23061484.
      Zook, E. G., MacArthur, M. J., & Toepfer, E. W. (1956). Pantothenic acid in foods. U.S. Department of Agriculture. https://books.google.fr/books?id=x30wAAAAYAAJ.
      Lodi, M.(1943). Untersuchungen Über den Gehalt von Carotin, Vitamin B1 B2, und C, bei der alkoholischen Garung der Weinbeeren. Vitamine und Hormone, 4, 443-455.
    • Accession Number:
      0 (Vitamins)
    • Publication Date:
      Date Created: 20210422 Date Completed: 20211025 Latest Revision: 20211025
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/1541-4337.12743
    • Accession Number:
      33884746