Predicting disability progression and cognitive worsening in multiple sclerosis using patterns of grey matter volumes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BMJ Publishing Group Country of Publication: England NLM ID: 2985191R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1468-330X (Electronic) Linking ISSN: 00223050 NLM ISO Abbreviation: J Neurol Neurosurg Psychiatry Subsets: MEDLINE
    • Publication Information:
      Publication: London : BMJ Publishing Group
      Original Publication: London : British Medical Association
    • Subject Terms:
    • Abstract:
      Objective: In multiple sclerosis (MS), MRI measures at the whole brain or regional level are only modestly associated with disability, while network-based measures are emerging as promising prognostic markers. We sought to demonstrate whether data-driven patterns of covarying regional grey matter (GM) volumes predict future disability in secondary progressive MS (SPMS).
      Methods: We used cross-sectional structural MRI, and baseline and longitudinal data of Expanded Disability Status Scale, Nine-Hole Peg Test (9HPT) and Symbol Digit Modalities Test (SDMT), from a clinical trial in 988 people with SPMS. We processed T1-weighted scans to obtain GM probability maps and applied spatial independent component analysis (ICA). We repeated ICA on 400 healthy controls. We used survival models to determine whether baseline patterns of covarying GM volume measures predict cognitive and motor worsening.
      Results: We identified 15 patterns of regionally covarying GM features. Compared with whole brain GM, deep GM and lesion volumes, some ICA components correlated more closely with clinical outcomes. A mainly basal ganglia component had the highest correlations at baseline with the SDMT and was associated with cognitive worsening (HR=1.29, 95% CI 1.09 to 1.52, p<0.005). Two ICA components were associated with 9HPT worsening (HR=1.30, 95% CI 1.06 to 1.60, p<0.01 and HR=1.21, 95% CI 1.01 to 1.45, p<0.05). ICA measures could better predict SDMT and 9HPT worsening (C-index=0.69-0.71) compared with models including only whole and regional MRI measures (C-index=0.65-0.69, p value for all comparison <0.05).
      Conclusions: The disability progression was better predicted by some of the covarying GM regions patterns, than by single regional or whole-brain measures. ICA, which may represent structural brain networks, can be applied to clinical trials and may play a role in stratifying participants who have the most potential to show a treatment effect.
      Competing Interests: Competing interests: None declared.
      (© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
    • References:
      Nat Rev Dis Primers. 2018 Nov 8;4(1):43. (PMID: 30410033)
      Curr Opin Neurol. 2002 Jun;15(3):239-45. (PMID: 12045719)
      Neuroimage. 2005 Mar;25(1):193-205. (PMID: 15734355)
      Mult Scler. 2011 Sep;17(9):1098-106. (PMID: 21586487)
      Neural Netw. 2000 May-Jun;13(4-5):411-30. (PMID: 10946390)
      Neuroimage Clin. 2016 Jun 14;12:123-31. (PMID: 27408797)
      Ther Adv Neurol Disord. 2019 Apr 24;12:1756286419838673. (PMID: 31040880)
      Clin Neuropsychol. 2014;28(2):281-99. (PMID: 24438521)
      Brain. 2016 Jan;139(Pt 1):115-26. (PMID: 26637488)
      J Magn Reson Imaging. 2019 May;49(5):1312-1321. (PMID: 30597656)
      Neuroimage. 2006 Feb 1;29(3):859-67. (PMID: 16203159)
      Lancet. 2018 Mar 31;391(10127):1263-1273. (PMID: 29576505)
      Ann Neurol. 2018 Feb;83(2):223-234. (PMID: 29328531)
      Childs Nerv Syst. 2002 Aug;18(8):386-404. (PMID: 12192499)
      Neuroimage. 2000 Jun;11(6 Pt 1):805-21. (PMID: 10860804)
      Brain. 2020 Feb 1;143(2):635-649. (PMID: 32040564)
      Nat Rev Neurol. 2018 Feb;14(2):75-93. (PMID: 29326424)
      Brain Struct Funct. 2019 Dec;224(9):3031-3044. (PMID: 31701266)
      Brain. 2016 Jan;139(Pt 1):7-10. (PMID: 26747854)
      Nat Rev Neurol. 2010 Jan;6(1):15-28. (PMID: 20057496)
      Stat Med. 2011 May 10;30(10):1105-17. (PMID: 21484848)
      J Neurol. 2012 Jan;259(1):139-46. (PMID: 21720932)
      Mult Scler Int. 2013;2013:627870. (PMID: 23878736)
      Mult Scler. 2017 Apr;23(5):721-733. (PMID: 28206827)
      Nat Rev Neurosci. 2015 Mar;16(3):147-58. (PMID: 25697158)
      J Int Neuropsychol Soc. 2010 Jan;16(1):6-16. (PMID: 19796441)
      Mult Scler. 2010 Sep;16(9):1117-25. (PMID: 20813778)
      Neurology. 2010 Jun 8;74(23):1868-76. (PMID: 20530323)
      Front Hum Neurosci. 2018 Nov 27;12:478. (PMID: 30542275)
      Brain. 2018 Jun 1;141(6):1665-1677. (PMID: 29741648)
      Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. (PMID: 19620724)
      F1000Res. 2019 Jan 30;8:. (PMID: 30755797)
      Neuroimage. 2016 Oct 1;139:376-384. (PMID: 27377222)
      Ann Neurol. 2013 Dec;74(6):848-61. (PMID: 23868451)
      J Neuroimaging. 2005;15(4 Suppl):10S-21S. (PMID: 16385015)
      Front Neurosci. 2012 Dec 05;6:171. (PMID: 23227001)
      IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20. (PMID: 20378467)
      Mult Scler. 2015 Jun;21(7):875-84. (PMID: 25139943)
      Ann Neurol. 2008 Sep;64(3):255-65. (PMID: 18661561)
      Lancet. 2016 Mar 12;387(10023):1075-1084. (PMID: 26827074)
      Cold Spring Harb Perspect Med. 2018 Mar 1;8(3):. (PMID: 29358320)
      Front Neuroinform. 2013 Dec 23;7:39. (PMID: 24409140)
      J Neurosci. 2019 Jan 2;39(1):3-14. (PMID: 30389839)
      Lancet Neurol. 2018 May;17(5):405-415. (PMID: 29545067)
      AJNR Am J Neuroradiol. 2005 Feb;26(2):341-6. (PMID: 15709132)
      J Neurol. 2020 May;267(5):1536-1546. (PMID: 32040710)
      Lancet Neurol. 2009 Mar;8(3):280-91. (PMID: 19233038)
      N Engl J Med. 2017 Jan 19;376(3):209-220. (PMID: 28002688)
      Neuroimage Clin. 2017 Nov 05;17:444-451. (PMID: 29159057)
      IEEE Trans Med Imaging. 2015 Sep;34(9):1976-88. (PMID: 25879909)
      Eur J Neurol. 2019 Jun;26(6):893-902. (PMID: 30629788)
      Mult Scler. 2020 Apr;26(4):442-456. (PMID: 30799709)
      Curr Psychiatry Rep. 2019 Aug 13;21(9):87. (PMID: 31410661)
      Front Neurol. 2021 Jan 14;11:621010. (PMID: 33519702)
      AJNR Am J Neuroradiol. 2019 Jan;40(1):107-108. (PMID: 30591510)
      Ann Neurol. 2007 Jan;61(1):14-24. (PMID: 17262850)
      Neurology. 2015 Sep 29;85(13):1115-22. (PMID: 26320199)
      Brain. 2019 Jul 1;142(7):1858-1875. (PMID: 31209474)
    • Grant Information:
      MR/S026088/1 United Kingdom MRC_ Medical Research Council; RP-2017-08-ST2-004 United Kingdom DH_ Department of Health
    • Publication Date:
      Date Created: 20210421 Date Completed: 20220105 Latest Revision: 20220105
    • Publication Date:
      20231215
    • Accession Number:
      PMC8372398
    • Accession Number:
      10.1136/jnnp-2020-325610
    • Accession Number:
      33879535